Bionomia will be offline 2025-01-26 13:00 UTC for 1 hr to refresh data from the Global Biodiversity Information Facility.

Science Enabled by Specimen Data

Shirey, V., and J. Rabinovich. 2024. Climate change-induced degradation of expert range maps drawn for kissing bugs (Hemiptera: Reduviidae) and long-standing current and future sampling gaps across the Americas. Memórias do Instituto Oswaldo Cruz 119. https://doi.org/10.1590/0074-02760230100

BACKGROUND Kissing bugs are the vectors of Trypanosoma cruzi, the etiological agent of Chagas disease (CD). Despite their epidemiological relevance, kissing bug species are under sampled in terms of their diversity and it is unclear what biases exist in available kissing bug data. Under climate change, range maps for kissing bugs may become less accurate as species shift their ranges to track climatic tolerance. OBJECTIVES Quantify inventory completeness in available kissing bug data. Assess how well range maps are at conveying information about current distributions and potential future distributions subject to shift under climate change. Intersect forecasted changes in kissing bug distributions with contemporary sampling gaps to identify regions for future sampling of the group. Identify whether a phylogenetic signal is present in expert range knowledge as more closely related species may be similarly well or lesser understood. METHODS We used species distribution models (SDM), specifically constructed from Bayesian additive regression trees, with Bioclim variables, to forecast kissing bug distributions into 2100 and intersect these with current sampling gaps to identify priority regions for sampling. Expert range maps were assessed by the agreement between the expert map and SDM generated occurrence probability. We used classical hypothesis testing methods as well as tests of phylogenetic signal to meet our objectives. FINDINGS Expert range maps vary in their quality of depicting current kissing bug distributions. Most expert range maps decline in their ability to convey information about kissing bug occurrence over time, especially in under sampled areas. We found limited evidence for a phylogenetic signal in expert range map performance. MAIN CONCLUSIONS Expert range maps are not a perfect account of species distributions and may degrade in their ability to accurately convey distribution knowledge under future climates. We identify regions where future sampling of kissing bugs will be crucial for completing biodiversity inventories.

Malik, K., A. Bugaj-Nawrocka, and K. Wieczorek. 2024. Taxonomic Revision of the Nearctic Genus Drepanaphis Del Guercio (Hemiptera, Aphididae: Drepanosiphinae). Insects 15: 553. https://doi.org/10.3390/insects15070553

The Nearctic aphid genus Drepanaphis Del Guercio, 1909, the largest within the subfamily Drepanosiphinae (Hemiptera: Aphididae), is characterised by distinctive dorsal abdominal tubercles. This study presents a comprehensive taxonomic revision of the genus, expanding the recognised species to 18, including the newly described Drepanaphis robinsoni Malik sp. nov. Detailed descriptions and figures for 44 morphs, encompassing alate viviparous females, oviparous females and males, are provided, with new identification keys for all known species and morphs. The sexual morphs of 15 species, particularly oviparous females, are documented for the first time. Morphometric and principal component analyses (PCA) are employed to distinguish the studied taxa. This study identifies and corrects numerous misidentifications in museum collections, previously labelled as D. acerifoliae, D. choanotricha, D. kanzensis, D. knowltoni, D. parva, D. sabrinae or D. tissoti. Furthermore, it revalidates the distinct status of D. nigricans and D. tissoti, which had been synonymised in earlier works. Current range maps for all species and images of key morphological features obtained through light and scanning electron microscopy are also presented, providing a more complete understanding of this understudied genus.

Qian, Q., D. Xu, W. Liao, and Z. Zhuo. 2024. Predicting the current and future suitable distribution range of Trilocha varians (Walker, 1855) (Lepidoptera: Bombycidae) in China. Bulletin of Entomological Research: 1–10. https://doi.org/10.1017/s0007485324000117

Trilocha varians is one of the major pests of Ficus spp. Based on 19 bioclimatic variables provided by the Worldclim, our study analysed the suitable distribution areas of T. varians under current and future climate changes (SSP1-2.6, SSP2-4.5, SSP5-8.5) for two periods (the 2050s and 2090s) using the maximum entropy algorithm (MaxEnt) model. Key environmental variables affecting the geographic distribution of T. varians were also identified, and the changes in the area of suitable range under current and future climate changes were compared. The results showed that the key environmental variables affecting the distribution of T. varians were temperature and precipitation, comprising annual mean temperature (bio1), temperature seasonality (standard deviation × 100) (bio4), precipitation of driest month (bio14), and precipitation of driest quarter (bio17). Under the current climatic conditions, the suitable distribution area of T. varians is within the range of 92°13′E–122°08′E, 18°17′N–31°55′N. The current high, medium, and low suitable areas for T. varians predicted by the MaxEnt model are 14.00 × 104, 21.50 × 104, and 71.95 × 104 km2, of which the high suitable areas are mainly distributed in southern Guangdong, southwestern Guangxi, western Taiwan, Hong Kong, and Hainan. Under different future climatic conditions, some of the high, medium, and low suitability zones for T. varians increased and some decreased, but the mass centre did not migrate significantly. The Pearl River Basin is predicted to remain the main distribution area of T. varians.

Hartl, T., V. Srivastava, S. Prager, and T. Wist. 2024. Evaluating climate change scenarios on global pea aphid habitat suitability using species distribution models. Climate Change Ecology 7: 100084. https://doi.org/10.1016/j.ecochg.2024.100084

The global threat of invasive alien species (IAS) being introduced into new habitats is concerning, particularly in agricultural crops as invasive insect species are continuing to expand their distribution through anthropogenic activities and climate changes. Pea aphids (Acyrthosiphon pisum Harris) are an economic threat to numerous legume crops as they can reproduce parthenogenetically, damage crops directly, and vector over 30 plant viruses as the insect's distribution continues to spread. There are no existing pea aphid-specific risk maps that identify the habitat suitability of pea aphids at either a regional or global scale. Here, we used Species Distribution Models (SDMs) to evaluate which climatic variables influence pea aphid distribution, identify regions of potential distribution, and analyze the global distribution of pea aphids under current and future climate change scenarios (SSP 126, 245, and 370) by utilizing presence-only SDMs based on Maximum Entropy (MaxEnt). The modeling results indicate suitable conditions are relevant for pea aphid establishment in six out of seven continents, with significant range expansion in western Canada, the United States of America, and across Europe. We identified human influence to be the most prominent predictor in determining the distribution of pea aphids, supporting the fact that invasive species distributions are heavily impacted by human activities.

Li, D., Z. Li, Z. Liu, Y. Yang, A. G. Khoso, L. Wang, and D. Liu. 2022. Climate change simulations revealed potentially drastic shifts in insect community structure and crop yields in China’s farmland. Journal of Pest Science. https://doi.org/10.1007/s10340-022-01479-3

Climate change will cause drastic fluctuations in agricultural ecosystems, which in turn may affect global food security. We used ecological niche modeling to predict the potential distribution for four cereal aphids (i.e., Sitobion avenae, Rhopalosiphum padi, Schizaphis graminum, and Diurphis noxia…

Schneider, K., D. Makowski, and W. van der Werf. 2021. Predicting hotspots for invasive species introduction in Europe. Environmental Research Letters 16: 114026. https://doi.org/10.1088/1748-9326/ac2f19

Plant pest invasions cost billions of Euros each year in Europe. Prediction of likely places of pest introduction could greatly help focus efforts on prevention and control and thus reduce societal costs of pest invasions. Here, we test whether generic data-driven risk maps of pest introduction, val…

Liu, X., T. M. Blackburn, T. Song, X. Wang, C. Huang, and Y. Li. 2020. Animal invaders threaten protected areas worldwide. Nature Communications 11. https://doi.org/10.1038/s41467-020-16719-2

Protected areas are the cornerstone of biodiversity conservation. However, alien species invasion is an increasing threat to biodiversity, and the extent to which protected areas worldwide are resistant to incursions of alien species remains poorly understood. Here, we investigate establishment by 8…

Uludag, A., N. Aksoy, A. Yazlık, Z. F. Arslan, E. Yazmış, I. Uremis, T. A. Cossu, et al. 2017. Alien flora of Turkey: checklist, taxonomic composition and ecological attributes. NeoBiota 35: 61–85. https://doi.org/10.3897/neobiota.35.12460

The paper provides an updated checklist of the alien flora of Turkey with information on its structure. The alien flora of Turkey comprises 340 taxa, among which there are 321 angiosperms, 17 gymnosperms and two ferns. Of the total number of taxa, 228 (68%) are naturalized and 112 (32%) are casual. …