Science Enabled by Specimen Data
Bena, M. J., M. C. Baranzelli, S. M. Costas, A. Cosacov, M. C. Acosta, A. Moreira‐Muñoz, and A. N. Sérsic. 2023. Linking South American dry regions by the Gran Chaco: Insights from the evolutionary history and ecological diversification of Gomphrena s.str. (Gomphrenoideae, Amaranthaceae). Journal of Systematics and Evolution. https://doi.org/10.1111/jse.13023
Geoclimatic events driving South American aridization have generated biota differentiation due to barriers and new environment formation. New environments allow species climatic niche evolution, or the geographical expansion of an existing one. Understanding the role these processes play may clarify the evolution of South American biota. Gomphrena L. ranges across almost all the continent's arid environments. We tested whether South American drylands are biogeographically connected through the Gran Chaco but, due to different aridity levels, lineage diversification could have also been associated with the evolution of climatic niches and morphological or physiological traits. With available data, we generated a dated phylogeny, estimated ancestral ranges, performed diversification analyses, reconstructed ancestral states of two characters, and examined if niches have changed between lineages. Results showed that Gomphrena diversified throughout the easternmost South American drylands ~15.4 Ma, and subsequently three independent clades colonized the western arid regions during the last Andean pulse, and after the marine transgressions (~4.8–0.4 Ma) via the Gran Chaco. The colonization implied an increase in the diversification rate of annuals over perennials and the progressive east–west differentiation of the occupied climatic niche. This diversification was influenced by C4 photosynthesis, which could have acted as a niche opener to conquer new environments after the Paranaean Sea withdrew. Spatiotemporal patterns found in Gomphrena suggest that geographical expansion and evolution of climatic niches played a common but decoupled role in promoting diversification. These results show that the Gran Chaco may have acted as a historical connection linking South American drylands.
Santos, D. C., A. M. A. Oliveira, R. L. M. Alvarenga, and T. B. Gibertoni. 2023. How climate change will change the potential distribution of two wood-decaying fungi? Acta Botanica Brasilica 37. https://doi.org/10.1590/1677-941x-abb-2023-0021
Changes in climate, which can be understood as fluctuations in climate patterns as a reflection of natural or anthropic interventions, can generate changes in the environment and consequently affect the diversity of organisms. Fungi are extremely important in organic matter cycling in different environments, mainly forest areas, decomposing dead wood. To better understand the effects of climate change on two wood-degrading Agaricomycetes, their potential neotropical distribution was modeled using known occurrence data, available in the GBIF database and in specific literature, and associated with predictor variables extracted from Worldclim. A modeling package in R environment was used to analyze the present and future suitability for the optimistic and pessimistic scenarios. The results indicate the climate as an important factor in the distribution of Auricularia brasiliana and Megasporoporia neosetulosa. The suitability factors for the metrics used indicate that the models can be used to analyze climatic areas and that temperature and precipitation strongly influence the permanence of species in these locations. The results also indicate areas that can be affected by climatic effects, consequently causing a decrease in the occurrence and permanence of these fungi in the Neotropics. Our models can be useful as future guidelines in conservation studies for fungi.
Kolanowska, M. 2023. Future distribution of the epiphytic leafless orchid (Dendrophylax lindenii), its pollinators and phorophytes evaluated using niche modelling and three different climate change projections. Scientific Reports 13. https://doi.org/10.1038/s41598-023-42573-5
The identification of future refugia for endangered species from the effects of global warming is crucial for improving their conservation. Because climate-driven shifts in ranges and local extinctions can result in a spatial mismatch with their symbiotic organisms, however, it is important to incorporate in niche modelling the ecological partners of the species studied. The aim of this study was to evaluate the effect of climate change on the distribution of suitable niches for the ghost orchid ( Dendrophylax lindenii ) and its phorophytes and pollinators. Thus, its five species of host trees and three pollen vectors were included in the analysis. Climatic preferences of all the species studied were evaluated. The modelling was based on three different climate change projections and four Shared Socio-economic Pathway trajectories. All the species analysed are characterized by narrow temperature tolerances, which with global warming are likely to result in local extinctions and range shifts. D. lindenii is likely to be subjected to a significant loss of suitable niches, but within a reduced geographical range, both host trees and pollen vectors will be available in the future. Future conservation of this orchid should focus on areas that are likely be suitable for it and its ecological partners.
Rodríguez-Merino, A. 2023. Identifying and Managing Areas under Threat in the Iberian Peninsula: An Invasion Risk Atlas for Non-Native Aquatic Plant Species as a Potential Tool. Plants 12: 3069. https://doi.org/10.3390/plants12173069
Predicting the likelihood that non-native species will be introduced into new areas remains one of conservation’s greatest challenges and, consequently, it is necessary to adopt adequate management measures to mitigate the effects of future biological invasions. At present, not much information is available on the areas in which non-native aquatic plant species could establish themselves in the Iberian Peninsula. Species distribution models were used to predict the potential invasion risk of (1) non-native aquatic plant species already established in the peninsula (32 species) and (2) those with the potential to invade the peninsula (40 species). The results revealed that the Iberian Peninsula contains a number of areas capable of hosting non-native aquatic plant species. Areas under anthropogenic pressure are at the greatest risk of invasion, and the variable most related to invasion risk is temperature. The results of this work were used to create the Invasion Risk Atlas for Alien Aquatic Plants in the Iberian Peninsula, a novel online resource that provides information about the potential distribution of non-native aquatic plant species. The atlas and this article are intended to serve as reference tools for the development of public policies, management regimes, and control strategies aimed at the prevention, mitigation, and eradication of non-native aquatic plant species.
de Deus Vidal, J., C. B. Schmitt, and I. Koch. 2023. Comparative richness patterns of range sizes and life forms of Apocynaceae along forest–savanna transitions in Brazil. Botanical Journal of the Linnean Society. https://doi.org/10.1093/botlinnean/boad047
Brazilian moist forests and savannas are some of the most species-rich biomes in the Neotropics. In the transition zones between these regions, ecotones often accumulate even higher taxonomic diversity. However, whether these ecotonal communities consist of overlapping species widespread from the neighbouring biomes or a specific set of locally adapted species still needs to be clarified. Regional differences in species richness may be influenced by factors such as species' environmental tolerances, life forms, or species’ range sizes. To investigate the species richness found in ecotones, we used the ‘milk-weed’ family (Apocynaceae), which comprises both widespread and narrowly distributed trees, lianas, and shrubs, as a model to evaluate if (i) their observed richness in ecotones is promoted by widespread species or by locally adapted species; (ii) trees, lianas, and shrubs show different richness patterns in savannas, ecotones, and forests; and (iii) species found in ecotones have broader environmental tolerances than other species in the family. We used a taxonomically curated georeferenced dataset to compare the range sizes of 643 species of Apocynaceae from 73 genera listed for Brazil, comprising 298 species with a liana life form and 345 trees, herbs, or shrubs. We recorded 335 predominantly forest species, 56 savanna species, and 152 ecotone species, for which we quantified species richness, areas of occurrence, precipitation, and temperature ranges and tested for differences in range sizes and environmental tolerances between habits and ecoregions. Our results indicate that (i) Apocynaceae species occurring in ecotones have wider geographical ranges than species not occurring in ecotones; (ii) lianas showed higher area-weighted richness in ecotones than other life forms; and (iii) species found in ecotones had broader environmental tolerances than species restricted to moist forests or savannas. These results indicate that the species richness found in ecotones between savannas and moist forests in Brazil is not necessarily a consequence of higher endemism and local adaptation but may also be a result of overlapping ranges of widespread species typically associated with neighbouring biomes. Together, our findings add to our understanding of ecotones and biomes as continuous, gradual biogeographical transitions instead of sharply defined ecological units.
Calvente, A., A. P. Alves da Silva, D. Edler, F. A. Carvalho, M. R. Fantinati, A. Zizka, and A. Antonelli. 2023. Spiny but photogenic: amateur sightings complement herbarium specimens to reveal the bioregions of cacti. American Journal of Botany. https://doi.org/10.1002/ajb2.16235
Premise: Cacti are characteristic elements of the Neotropical flora and of major interest for biogeographic, evolutionary, and ecological studies. Here we test global biogeographic boundaries for Neotropical Cactaceae using specimen‐based occurrences coupled with data from visual observations, as a means to tackle the known collection biases in the family.MethodsSpecies richness and record density were assessed for preserved specimens and human observations and a bioregional scheme tailored to Cactaceae was produced using the interactive web application Infomap Bioregions based on data from 261,272 point records cleaned through automated and manual steps.Key ResultsWe find that areas in Mexico and southwestern USA, Eastern Brazil and along the Andean region have the greatest density of records and the highest species richness. Human observations complement information from preserved specimens substantially, especially along the Andes. We propose 24 cacti bioregions, among which the most species‐rich are: northern Mexico/southwestern USA, central Mexico, southern central Mexico, Central America, Mexican Pacific coast, central and southern Andes, northwestern Mexico/extreme southwestern USA, southwestern Bolivia, northeastern Brazil, Mexico/Baja California.ConclusionsThe bioregionalization proposed shows biogeographical boundaries specific to cacti, and can thereby aid further evolutionary, biogeographic, and ecological studies by providing a validated framework for further analyses. This classification builds upon, and is distinctive from, other expert‐derived regionalization schemes for other taxa. Our results showcase how observation data, including citizen‐science records, can complement traditional specimen‐based data for biogeographic research, particularly for taxa with specific specimen collection and preservation challenges and those that are threatened or internationally protected.This article is protected by copyright. All rights reserved.
Luza, A. L., A. V. Rodrigues, L. Mamalis, and V. Zulian. 2023. Spatial distribution of the greater rhea, Rhea americana (Linnaeus, 1758), in Rio Grande do Sul, southern Brazil: citizen-science data, probabilistic mapping, and comparison with expert knowledge. Ornithology Research. https://doi.org/10.1007/s43388-023-00143-3
The popularization of citizen-science platforms has increased the amount of data available in a fine spatial and temporal resolution, which can be used to fill distribution knowledge gaps through probabilistic maps. In this study, we gathered expert-based information and used species distribution models to produce two independent maps of the greater rhea ( Rhea americana , Rheiformes, Rheidae) distribution in the state of Rio Grande do Sul, Brazil. We integrated municipality level detection/non-detection data from five citizen-science datasets into a Bayesian site occupancy model, accounting for false negatives, sampling effort, habitat covariates, and spatial autocorrelation. We addressed whether habitat (grassland and crop field cover, number of rural properties) and spatial autocorrelation explains the realized occurrence of the species and compared model-based and expert-based occurrence maps. The mean estimated percentage of occupied municipalities was 48% (239 out of 497 municipalities), whereas experts declared 21% of the municipalities (103) as occupied by the species. While both mapping approaches showed greater rhea presence in most municipalities of the Pampa biome, they disagreed in the majority of the municipalities in the Atlantic Forest, where more fieldwork must be undertaken. The greater rhea distribution was exclusively explained by the spatial autocorrelation component, suggesting that the species expanded its distribution towards the north of the state, reaching the Atlantic Forest, following deforestation and agriculture expansion.
Geier, C., J. M. Bouchal, S. Ulrich, D. Uhl, T. Wappler, S. Wedmann, R. Zetter, et al. 2023. Potential pollinators and paleoecological aspects of Eocene Ludwigia (Onagraceae) from Eckfeld, Germany. Palaeoworld. https://doi.org/10.1016/j.palwor.2023.07.003
Paleogene flower-insect interactions and paleo-pollination processes are, in general, poorly understood and fossil evidence for such floral and faunal interactions are rarely reported. To shed light on angiosperm flower-insect interactions, we investigated several hundred fossil flowers and insects from the middle Eocene Fossil Lagerstätte of Eckfeld, Germany. During our work, we discovered a unique fossil Ludwigia flower (bud) with in situ pollen. The ecological preferences (climate, biome, habitat, etc.) of extant Ludwigia and the paleoecological configurations of the fossil plant assemblage support the taxonomic affiliation of the flower bud and an Eocene presence of Ludwigia in the vicinity of the former Lake Eckfeld. Today’s Ludwigia are mostly pollinated by Hymenoptera (bees). Therefore, we screened all currently known hymenopteran fossils from Eckfeld but found no Ludwigia pollen adhering to any of the specimens. On the contrary, we discovered Ludwigia pollen adhering to two different groups of Coleoptera (beetles). Our study suggests that during the Eocene of Europe, Ludwigia flowers were visited and probably pollinated by beetles and over time there was a shift in primary flower visitors/pollinators, from beetles to bees, sometime during the late Paleogene to Neogene.
Maurin, O., A. Anest, F. Forest, I. Turner, R. L. Barrett, R. C. Cowan, L. Wang, et al. 2023. Drift in the tropics: Phylogenetics and biogeographical patterns in Combretaceae. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13737
Aim The aim of this study was to further advance our understanding of the species-rich, and ecologically important angiosperm family Combretaceae to provide new insights into their evolutionary history. We assessed phylogenetic relationships in the family using target capture data and produced a dated phylogenetic tree to assess fruit dispersal modes and patterns of distribution. Location Tropical and subtropical regions. Time Period Cretaceous to present. Major Taxa Studied Family Combretaceae is a member of the rosid clade and comprises 10 genera and more than 500 species, predominantly assigned to genera Combretum and Terminalia, and occurring on all continents and in a wide range of ecosystems. Methods We use a target capture approach and the Angiosperms353 universal probes to reconstruct a robust dated phylogenetic tree for the family. This phylogenetic framework, combined with seed dispersal traits, biome data and biogeographic ranges, allows the reconstruction of the biogeographical history of the group. Results Ancestral range reconstructions suggest a Gondwanan origin (Africa/South America), with several intercontinental dispersals within the family and few transitions between biomes. Relative abundance of fruit dispersal types differed by both continent and biome. However, intercontinental colonizations were only significantly enhanced by water dispersal (drift fruit), and there was no evidence that seed dispersal modes influenced biome shifts. Main Conclusions Our analysis reveals a paradox as drift fruit greatly enhanced dispersal distances at intercontinental scale but did not affect the strong biome conservatism observed.
Kor, L., and M. Diazgranados. 2023. Identifying important plant areas for useful plant species in Colombia. Biological Conservation 284: 110187. https://doi.org/10.1016/j.biocon.2023.110187
While area-based approaches continue to dominate biodiversity conservation, there is growing recognition of the importance of the human dimensions of biodiversity. We applied the Important Plant Areas (IPA) approach in Colombia to identify key sites for the conservation of plant species with reported human uses. Drawing on the Checklist of Useful Plants of Colombia, we collated 1,045,889 clean occurrence records for 5400 native species from global data repositories and digitized herbaria. Through analysis based on regionalized grid cells, we identified 980 sites meeting IPA thresholds. These are primarily located in forest habitats, with only 19.8 % within existing national natural parks or internationally designated conservation areas. Grid cells were transformed to polygons based on overlapping ecosystems and administrative boundaries to form more meaningful site boundaries. A subsequent two-stage ranking procedure based on conservation value and richness found 46 sites to be of high priority, with 10 selected as top priorities for further investigation and conservation action. These 10 sites support significant populations of 33 threatened useful plant species and represent six of the 13 bioregions of Colombia in just 0.27 % of its land area. To progress from potential to confirmed IPAs, targeted fieldwork is required alongside stakeholder engagement and consultation, crucially involving local resource users. As a megadiverse country ranked second in the world for its botanical richness, effective IPA management would not only contribute to Colombian targets for sustainable development and conservation but would also support global targets to recover biodiversity for both planet and people.