Science Enabled by Specimen Data

de Pedro, D., F. S. Ceccarelli, R. Vandame, J. Mérida, and P. Sagot. 2023. Congruence between species richness and phylogenetic diversity in North America for the bee genus Diadasia (Hymenoptera: Apidae). Biodiversity and Conservation.

The current ecological crisis stemming from the loss of biodiversity and associated ecosystem services, highlights the urgency of documenting diversity and distribution. Bees are a classical example of an ecologically and economically important group, due to their high diversity and varied ecosystem services, especially pollination. Here, two common biodiversity indices, namely species richness and phylogenetic diversity, are evaluated geographically to determine the best approach for selecting areas of conservation priority. The model organisms used in this study are the North American species belonging to the bee genus Diadasia (Apidae). Based on the results obtained by analyzing distributional records and a molecular phylogeny, we can see that species richness and phylogenetic diversity are closely linked, although phylogenetic diversity provides a more detailed assessment of the spatial distribution of diversity. Therefore, while either one of these commonly used indices are valid as far as selecting areas of conservation priority, we recommend, if possible, to include genetic information in biodiversity and conservation studies.

Lopes, D., E. de Andrade, A. Egartner, F. Beitia, M. Rot, C. Chireceanu, V. Balmés, et al. 2023. FRUITFLYRISKMANAGE: A Euphresco project for Ceratitis capitata Wiedemann (Diptera: Tephritidae) risk management applied in some European countries. EPPO Bulletin.

Ceratitis capitata (Wiedemann), the Mediterranean fruit fly or medfly, is one of the world's most serious threats to fresh fruits. It is highly polyphagous (recorded from over 300 hosts) and capable of adapting to a wide range of climates. This pest has spread to the EPPO region and is mainly present in the southern part, damaging Citrus and Prunus. In Northern and Central Europe records refer to interceptions or short‐lived adventive populations only. Sustainable programs for surveillance, spread assessment using models and control strategies for pests such as C. capitata represent a major plant health challenge for all countries in Europe. This article includes a review of pest distribution and monitoring techniques in 11 countries of the EPPO region. This work compiles information that was crucial for a better understanding of pest occurrence and contributes to identifying areas susceptible to potential invasion and establishment. The key outputs and results obtained in the Euphresco project included knowledge transfer about early detection tools and methods used in different countries for pest monitoring. A MaxEnt software model resulted in risk maps for C. capitata in different climatic regions. This is an important tool to help decision making and to develop actions against this pest in the different partner countries.

Pelletier, D., and J. R. K. Forrest. 2022. Pollen specialisation is associated with later phenology in Osmia bees (Hymenoptera: Megachilidae). Ecological Entomology.

Species exhibit a range of specialisation in diet and other niche axes, with specialists typically thought to be more efficient in resource use but more vulnerable to extinction than generalists. Among herbivorous insects, dietary specialists seem more likely to lack acceptable host plants during the insect's feeding stage, owing to fluctuations in host‐plant abundance or phenology. Like other herbivores, bee species vary in host breadth from pollen specialisation (oligolecty) to generalisation (polylecty).Several studies have shown greater interannual variation in flowering phenology for earlier‐flowering plants than later‐flowering plants, suggesting that early‐season bees may experience substantial year‐to‐year variation in the floral taxa available to them.It was therefore reasoned that, among bees, early phenology could be a more viable strategy for generalists, which can use resources from multiple floral taxa, than for specialists. Consequently, it was expected that the median dates of collection of adult specimens to be earlier for generalist species than for specialists. To test this, phenology data and pollen diet information on 67 North American species of the bee genus Osmia was obtained.Controlling for latitude and phylogeny, it was found that dietary generalisation is associated with significantly earlier phenology, with generalists active, on average, 11–14 days earlier than specialists.This result is consistent with the generalist strategy being more viable than the specialist strategy for species active in early spring, suggesting that dietary specialisation may constrain the evolution of bee phenology—or vice versa.

Boyd, R. J., M. A. Aizen, R. M. Barahona‐Segovia, L. Flores‐Prado, F. E. Fontúrbel, T. M. Francoy, M. Lopez‐Aliste, et al. 2022. Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization efforts Y. Fourcade [ed.],. Diversity and Distributions 28: 1404–1415.

Aim Aggregated species occurrence data are increasingly accessible through public databases for the analysis of temporal trends in the geographic distributions of species. However, biases in these data present challenges for statistical inference. We assessed potential biases in data available through GBIF on the occurrences of four flower-visiting taxa: bees (Anthophila), hoverflies (Syrphidae), leaf-nosed bats (Phyllostomidae) and hummingbirds (Trochilidae). We also assessed whether and to what extent data mobilization efforts improved our ability to estimate trends in species' distributions. Location The Neotropics. Methods We used five data-driven heuristics to screen the data for potential geographic, temporal and taxonomic biases. We began with a continental-scale assessment of the data for all four taxa. We then identified two recent data mobilization efforts (2021) that drastically increased the quantity of records of bees collected in Chile available through GBIF. We compared the dataset before and after the addition of these new records in terms of their biases and estimated trends in species' distributions. Results We found evidence of potential sampling biases for all taxa. The addition of newly-mobilized records of bees in Chile decreased some biases but introduced others. Despite increasing the quantity of data for bees in Chile sixfold, estimates of trends in species' distributions derived using the postmobilization dataset were broadly similar to what would have been estimated before their introduction, albeit more precise. Main conclusions Our results highlight the challenges associated with drawing robust inferences about trends in species' distributions using publicly available data. Mobilizing historic records will not always enable trend estimation because more data do not necessarily equal less bias. Analysts should carefully assess their data before conducting analyses: this might enable the estimation of more robust trends and help to identify strategies for effective data mobilization. Our study also reinforces the need for targeted monitoring of pollinators worldwide.

Belitz, M. W., V. Barve, J. R. Doby, M. M. Hantak, E. A. Larsen, D. Li, J. A. Oswald, et al. 2021. Climate drivers of adult insect activity are conditioned by life history traits C. Scherber [ed.],. Ecology Letters 24: 2687–2699.

Insect phenological lability is key for determining which species will adapt under environmental change. However, little is known about when adult insect activity terminates and overall activity duration. We used community‐science and museum specimen data to investigate the effects of climate and urbanisation on timing of adult insect activity for 101 species varying in life history traits. We found detritivores and species with aquatic larval stages extend activity periods most rapidly in response to increasing regional temperature. Conversely, species with subterranean larval stages have relatively constant durations regardless of regional temperature. Species extended their period of adult activity similarly in warmer conditions regardless of voltinism classification. Longer adult durations may represent a general response to warming, but voltinism data in subtropical environments are likely underreported. This effort provides a framework to address the drivers of adult insect phenology at continental scales and a basis for predicting species response to environmental change.

Strona, G., P. S. A. Beck, M. Cabeza, S. Fattorini, F. Guilhaumon, F. Micheli, S. Montano, et al. 2021. Ecological dependencies make remote reef fish communities most vulnerable to coral loss. Nature Communications 12.

Ecosystems face both local hazards, such as over-exploitation, and global hazards, such as climate change. Since the impact of local hazards attenuates with distance from humans, local extinction risk should decrease with remoteness, making faraway areas safe havens for biodiversity. However, isolat…

Wham, B. E., S. R. Rahman, M. Martinez‐Correa, and H. M. Hines. 2021. Mito‐nuclear discordance at a mimicry color transition zone in bumble bee Bombus melanopygus. Ecology and Evolution 11: 18151–18168.

As hybrid zones exhibit selective patterns of gene flow between otherwise distinct lineages, they can be especially valuable for informing processes of microevolution and speciation. The bumble bee, Bombus melanopygus, displays two distinct color forms generated by Müllerian mimicry: a northern “Roc…

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885.

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Hemberger, J., M. S. Crossley, and C. Gratton. 2021. Historical decrease in agricultural landscape diversity is associated with shifts in bumble bee species occurrence C. Scherber [ed.],. Ecology Letters 24: 1800–1813.

Agricultural intensification is a key suspect among putative drivers of recent insect declines, but an explicit link between historical change in agricultural land cover and insect occurrence is lacking. Determining whether agriculture impacts beneficial insects (e.g. pollinators), is crucial to enh…

Murray, E. A., L. Evanhoe, S. Bossert, M. A. Geber, T. Griswold, and S. M. McCoshum. 2021. Phylogeny, Phenology, and Foraging Breadth ofAshmeadiella(Hymenoptera: Megachilidae) E. Almeida [ed.],. Insect Systematics and Diversity 5.

Ashmeadiella Cockerell (Megachilidae: Osmiini) is a bee genus endemic to North America, with greatest richness in arid and Mediterranean regions of the southwestern United States. Species relationships of Ashmeadiella were last analyzed in the 1950s, when Robert Sokal and Charles Michener developed …