Science Enabled by Specimen Data

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Schneider, K., D. Makowski, and W. van der Werf. 2021. Predicting hotspots for invasive species introduction in Europe. Environmental Research Letters 16: 114026. https://doi.org/10.1088/1748-9326/ac2f19

Plant pest invasions cost billions of Euros each year in Europe. Prediction of likely places of pest introduction could greatly help focus efforts on prevention and control and thus reduce societal costs of pest invasions. Here, we test whether generic data-driven risk maps of pest introduction, val…

Koch, J. B. U., J. A. Tabor, K. Montoya-Aiona, and J. A. Eiben. 2021. The Invasion of Megachile policaris (Hymenoptera: Megachilidae) to Hawai‘i K. Godfrey [ed.],. Journal of Insect Science 21. https://doi.org/10.1093/jisesa/ieab065

Islands are insular environments that are negatively impacted by invasive species. In Hawai‘i, at least 21 non-native bees have been documented to date, joining the diversity of >9,000 non-native and invasive species to the archipelago. The goal of this study is to describe the persistence, genet…

Ma, C.-S., W. Zhang, Y. Peng, F. Zhao, X.-Q. Chang, K. Xing, L. Zhu, et al. 2021. Climate warming promotes pesticide resistance through expanding overwintering range of a global pest. Nature Communications 12. https://doi.org/10.1038/s41467-021-25505-7

Climate change has the potential to change the distribution of pests globally and their resistance to pesticides, thereby threatening global food security in the 21st century. However, predicting where these changes occur and how they will influence current pest control efforts is a challenge. Using…

Chauhan, H. K., S. Oli, A. K. Bisht, C. Meredith, and D. Leaman. 2021. Review of the biology, uses and conservation of the critically endangered endemic Himalayan species Nardostachys jatamansi (Caprifoliaceae). Biodiversity and Conservation 30: 3315–3333. https://doi.org/10.1007/s10531-021-02269-6

The commercial demand for Nardostachys jatamansi in the global market has raised concern about its long-term sustainability. The genus Nardostachys is represented by the single species (Nardostachys jatamansi) endemic to the Himalayas. This study reviews biology, uses, threats, knowledge gaps, and c…

Roberts, J., and S. Florentine. 2021. Biology, distribution and control of the invasive species Ulex europaeus (Gorse): A global synthesis of current and future management challenges and research gaps. Weed Research 61: 272–281. https://doi.org/10.1111/wre.12491

Ulex europaeus (Gorse) is one of the most invasive shrubs in the world, being now found in more than 50 countries where it economically and environmentally degrades the land. This highly versatile shrub can live more than 30 years and produce over 18,000 fertile seeds annually that can remain viable…

Hemberger, J., M. S. Crossley, and C. Gratton. 2021. Historical decrease in agricultural landscape diversity is associated with shifts in bumble bee species occurrence C. Scherber [ed.],. Ecology Letters 24: 1800–1813. https://doi.org/10.1111/ele.13786

Agricultural intensification is a key suspect among putative drivers of recent insect declines, but an explicit link between historical change in agricultural land cover and insect occurrence is lacking. Determining whether agriculture impacts beneficial insects (e.g. pollinators), is crucial to enh…

Murray, E. A., L. Evanhoe, S. Bossert, M. A. Geber, T. Griswold, and S. M. McCoshum. 2021. Phylogeny, Phenology, and Foraging Breadth of Ashmeadiella (Hymenoptera: Megachilidae) E. Almeida [ed.],. Insect Systematics and Diversity 5. https://doi.org/10.1093/isd/ixab010

Ashmeadiella Cockerell (Megachilidae: Osmiini) is a bee genus endemic to North America, with greatest richness in arid and Mediterranean regions of the southwestern United States. Species relationships of Ashmeadiella were last analyzed in the 1950s, when Robert Sokal and Charles Michener developed …

Tabor, J. A., and J. B. Koch. 2021. Ensemble Models Predict Invasive Bee Habitat Suitability Will Expand under Future Climate Scenarios in Hawai’i. Insects 12: 443. https://doi.org/10.3390/insects12050443

Climate change is predicted to increase the risk of biological invasions by increasing the availability of climatically suitable regions for invasive species. Endemic species on oceanic islands are particularly sensitive to the impact of invasive species due to increased competition for shared resou…

Ellestad, P., F. Forest, M. Serpe, S. J. Novak, and S. Buerki. 2021. Harnessing large-scale biodiversity data to infer the current distribution of Vanilla planifolia (Orchidaceae). Botanical Journal of the Linnean Society 196: 407–422. https://doi.org/10.1093/botlinnean/boab005

Although vanilla is one of the most popular flavours in the world, there is still uncertainty concerning the native distribution of the species that produces it, Vanilla planifolia. To circumscribe the native geographical extent of this economically important species more precisely, we propose a new…