Science Enabled by Specimen Data

Zizka, A., Antonelli, A., & Silvestro, D. (2020). sampbias , a method for quantifying geographic sampling biases in species distribution data. Ecography. doi:10.1111/ecog.05102 https://doi.org/10.1111/ecog.05102

Geo‐referenced species occurrences from public databases have become essential to biodiversity research and conservation. However, geographical biases are widely recognized as a factor limiting the usefulness of such data for understanding species diversity and distribution. In particular, differenc…

Li, X., Li, B., Wang, G., Zhan, X., & Holyoak, M. (2020). Deeply digging the interaction effect in multiple linear regressions using a fractional-power interaction term. MethodsX, 7, 101067. doi:10.1016/j.mex.2020.101067 https://doi.org/10.1016/j.mex.2020.101067

In multiple regression Y ~ β0 + β1X1 + β2X2 + β3X1 X2 + ɛ., the interaction term is quantified as the product of X1 and X2. We developed fractional-power interaction regression (FPIR), using βX1M X2N as the interaction term. The rationale of FPIR is that the slopes of Y-X1 regression along the X2 gr…

De Jesús Hernández-Hernández, M., Cruz, J. A., & Castañeda-Posadas, C. (2020). Paleoclimatic and vegetation reconstruction of the miocene southern Mexico using fossil flowers. Journal of South American Earth Sciences, 104, 102827. doi:10.1016/j.jsames.2020.102827 https://doi.org/10.1016/j.jsames.2020.102827

Concern about the course of the current environmental problems has raised interest in investigating the different scenarios that have taken place in our planet throughout time. To that end, different methodologies have been employed in order to determine the different variables that compose the envi…

Deb, J. C., Forbes, G., & MacLean, D. A. (2020). Modelling the spatial distribution of selected North American woodland mammals under future climate scenarios. Mammal Review. doi:10.1111/mam.12210 https://doi.org/10.1111/mam.12210

North America has a diverse array of mammalian species. Model projections indicate significant variations in future climate conditions of North America, and the habitats of woodland mammals of this continent may be particularly sensitive to changes in climate.We report on the potential spatial distr…

Aguiar, L. M. S., Pereira, M. J. R., Zortéa, M., & Machado, R. B. (2020). Where are the bats? An environmental complementarity analysis in a megadiverse country. Diversity and Distributions. doi:10.1111/ddi.13137 https://doi.org/10.1111/ddi.13137

Aim: Field surveys are necessary to overcome Wallacean shortfalls. The task is even more important when human pressure on tropical—megadiverse—ecosystems is considered. However, due to financial constraints, spatial and temporal prioritization is required. Here, we used the concept of environmental …

Romero‐Muñoz, A., Benítez‐López, A., Zurell, D., Baumann, M., Camino, M., Decarre, J., … Kuemmerle, T. (2020). Increasing synergistic effects of habitat destruction and hunting on mammals over three decades in the Gran Chaco. Ecography. doi:10.1111/ecog.05053 https://doi.org/10.1111/ecog.05053

Habitat destruction and overexploitation are the main threats to biodiversity and where they co‐occur, their combined impact is often larger than their individual one. Yet, detailed knowledge of the spatial footprints of these threats is lacking, including where they overlap and how they change over…

Carrasco, J., Price, V., Tulloch, V., & Mills, M. (2020). Selecting priority areas for the conservation of endemic trees species and their ecosystems in Madagascar considering both conservation value and vulnerability to human pressure. Biodiversity and Conservation. doi:10.1007/s10531-020-01947-1 https://doi.org/10.1007/s10531-020-01947-1

Madagascar is one of the most biodiverse countries in Africa, due to its level of endemism and species diversity. However, the pressure of human activities threatens the last patches of natural vegetation in the country and conservation decisions are undertaken with limited data availability. In thi…

Sánchez‐Barradas, A., & Villalobos, F. (2020). Species geographical co‐occurrence and the effect of Grinnellian and Eltonian niche partitioning: The case of a Neotropical felid assemblage. Ecological Research. doi:10.1111/1440-1703.12070 https://doi.org/10.1111/1440-1703.12070

Understanding local coexistence and broad‐scale species co‐occurrence patterns are central questions in ecology and macroecology. Niche theory relates both spatial scales by considering the resources (Eltonian niche) and conditions (Grinnellian niche) used by species and allow us to assess the contr…

Moudrý, V., & Devillers, R. (2020). Quality and usability challenges of global marine biodiversity databases: An example for marine mammal data. Ecological Informatics, 56, 101051. doi:10.1016/j.ecoinf.2020.101051 https://doi.org/10.1016/j.ecoinf.2020.101051

Knowing spatial and temporal patterns of species distribution is paramount to support marine species persistence. While datasets provided by global aggregators are increasingly rich and useful, they suffer from various types of data quality issues that can impact their usage. Using marine mammals as…

Ritter, C. D., Faurby, S., Bennett, D. J., Naka, L. N., ter Steege, H., Zizka, A., … Antonelli, A. (2019). The pitfalls of biodiversity proxies: Differences in richness patterns of birds, trees and understudied diversity across Amazonia. Scientific Reports, 9(1). doi:10.1038/s41598-019-55490-3 https://doi.org/10.1038/s41598-019-55490-3

Most knowledge on biodiversity derives from the study of charismatic macro-organisms, such as birds and trees. However, the diversity of micro-organisms constitutes the majority of all life forms on Earth. Here, we ask if the patterns of richness inferred for macro-organisms are similar for micro-or…