Science Enabled by Specimen Data

Kagnew, B., A. Assefa, and A. Degu. 2022. Modeling the Impact of Climate Change on Sustainable Production of Two Legumes Important Economically and for Food Security: Mungbeans and Cowpeas in Ethiopia. Sustainability 15: 600. https://doi.org/10.3390/su15010600

Climate change is one of the most serious threats to global crops production at present and it will continue to be the largest threat in the future worldwide. Knowing how climate change affects crop productivity might help sustainability and crop improvement efforts. Under existing and projected climate change scenarios (2050s and 2070s in Ethiopia), the effect of global warming on the distribution of V. radiata and V. unguiculata was investigated. MaxEnt models were used to predict the current and future distribution pattern changes of these crops in Ethiopia using different climate change scenarios (i.e., lowest (RCP 2.6), moderate (RCP 4.5), and extreme (RCP 8.5)) for the years 2050s and 2070s. The study includes 81 and 68 occurrence points for V. radiata and V. unguiculata, respectively, along with 22 environmental variables. The suitability maps indicate that the Beneshangul Gumuz, Oromia, Amhara, SNNPR, and Tigray regions are the major Ethiopian regions with the potential to produce V. radiata, while Amhara, Gambella, Oromia, SNNPR, and Tigray are suitable for producing V. unguiculata. The model prediction for V. radiata habitat ranges distribution in Ethiopia indicated that 1.69%, 4.27%, 11.25% and 82.79% are estimated to be highly suitable, moderately suitable, less suitable, and unsuitable, respectively. On the other hand, the distribution of V. unguiculata is predicted to have 1.27%, 3.07%, 5.22%, and 90.44% habitat ranges that are highly suitable, moderately suitable, less suitable, and unsuitable, respectively, under the current climate change scenario by the year (2050s and 2070s) in Ethiopia. Among the environmental variables, precipitation of the wettest quarter (Bio16), solar radiation index (SRI), temperature seasonality (Bio4), and precipitation seasonality (Bio15) are discovered to be the most effective factors for defining habitat suitability for V. radiata, while precipitation of the wettest quarter (Bio16), temperature annual range (Bio7) and precipitation of the driest quarter (Bio17) found to be better habitat suitability indicator for V. unguiculata in Ethiopia. The result indicates that these variables were more relevant in predicting suitable habitat for these crops in Ethiopia. A future projection predicts that the suitable distribution region will become increasingly fragmented. In general, the study provides a scientific basis of suitable agro-ecological habitat for V. radiata and V. unguiculata for long-term crop management and production improvement in Ethiopia. Therefore, projections of current and future climate change impacts on such crops are vital to reduce the risk of crop failure and to identify the potential productive areas in the country.

Pan, Y., J. García-Girón, and L. L. Iversen. 2023. Global change and plant-ecosystem functioning in freshwaters. Trends in Plant Science. https://doi.org/10.1016/j.tplants.2022.12.013

Freshwater ecosystems are of worldwide importance for maintaining biodiversity and sustaining the provision of a myriad of ecosystem services to modern societies. Plants, one of the most important components of these ecosystems, are key to water nutrient removal, carbon storage, and food provision. Understanding how the functional connection between freshwater plants and ecosystems is affected by global change will be key to our ability to predict future changes in freshwater systems. Here, we synthesize global plant responses, adaptations, and feedbacks to present-day and future freshwater environments through trait-based approaches, from single individuals to entire communities. We outline the transdisciplinary knowledge benchmarks needed to further understand freshwater plant biodiversity and the fundamental services they provide.

Smith, A. B., S. J. Murphy, D. Henderson, and K. D. Erickson. 2023. Including imprecisely georeferenced specimens improves accuracy of species distribution models and estimates of niche breadth. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13628

Aim Museum and herbarium specimen records are frequently used to assess the conservation status of species and their responses to climate change. Typically, occurrences with imprecise geolocality information are discarded because they cannot be matched confidently to environmental conditions and are thus expected to increase uncertainty in downstream analyses. However, using only precisely georeferenced records risks undersampling of the environmental and geographical distributions of species. We present two related methods to allow the use of imprecisely georeferenced occurrences in biogeographical analysis. Innovation Our two procedures assign imprecise records to the (1) locations or (2) climates that are closest to the geographical or environmental centroid of the precise records of a species. For virtual species, including imprecise records alongside precise records improved the accuracy of ecological niche models projected to the present and the future, especially for species with c. 20 or fewer precise occurrences. Using only precise records underestimated loss of suitable habitat and overestimated the amount of suitable habitat in both the present and the future. Including imprecise records also improves estimates of niche breadth and extent of occurrence. An analysis of 44 species of North American Asclepias (Apocynaceae) yielded similar results. Main conclusions Existing studies examining the effects of spatial imprecision typically compare outcomes based on precise records against the same records with spatial error added to them. However, in real-world cases, analysts possess a mix of precise and imprecise records and must decide whether to retain or discard the latter. Discarding imprecise records can undersample the geographical and environmental distributions of species and lead to mis-estimation of responses to past and future climate change. Our method, for which we provide a software implementation in the enmSdmX package for R, is simple to use and can help leverage the large number of specimen records that are typically deemed “unusable” because of spatial imprecision in their geolocation.

Ralimanana, H., A. L. Perrigo, R. J. Smith, J. S. Borrell, S. Faurby, M. T. Rajaonah, T. Randriamboavonjy, et al. 2022. Madagascar’s extraordinary biodiversity: Threats and opportunities. Science 378. https://doi.org/10.1126/science.adf1466

Madagascar’s unique biota is heavily affected by human activity and is under intense threat. Here, we review the current state of knowledge on the conservation status of Madagascar’s terrestrial and freshwater biodiversity by presenting data and analyses on documented and predicted species-level conservation statuses, the most prevalent and relevant threats, ex situ collections and programs, and the coverage and comprehensiveness of protected areas. The existing terrestrial protected area network in Madagascar covers 10.4% of its land area and includes at least part of the range of the majority of described native species of vertebrates with known distributions (97.1% of freshwater fishes, amphibians, reptiles, birds, and mammals combined) and plants (67.7%). The overall figures are higher for threatened species (97.7% of threatened vertebrates and 79.6% of threatened plants occurring within at least one protected area). International Union for Conservation of Nature (IUCN) Red List assessments and Bayesian neural network analyses for plants identify overexploitation of biological resources and unsustainable agriculture as the most prominent threats to biodiversity. We highlight five opportunities for action at multiple levels to ensure that conservation and ecological restoration objectives, programs, and activities take account of complex underlying and interacting factors and produce tangible benefits for the biodiversity and people of Madagascar.

Campbell, L. C. E., E. T. Kiers, and G. Chomicki. 2022. The evolution of plant cultivation by ants. Trends in Plant Science. https://doi.org/10.1016/j.tplants.2022.09.005

Outside humans, true agriculture was previously thought to be restricted to social insects farming fungus. However, obligate farming of plants by ants was recently discovered in Fiji, prompting a re-examination of plant cultivation by ants. Here, we generate a database of plant cultivation by ants, identify three main types, and show that these interactions evolved primarily for shelter rather than food. We find that plant cultivation evolved at least 65 times independently for crops (~200 plant species), and 15 times in farmer lineages (~37 ant taxa) in the Neotropics and Asia/Australasia. Because of their high evolutionary replication, and variation in partner dependence, these systems are powerful models to unveil the steps in the evolution and ecology of insect agriculture.

Dimobe, K., K. Ouédraogo, P. Annighöfer, J. Kollmann, J. Bayala, C. Hof, M. Schmidt, et al. 2022. Climate change aggravates anthropogenic threats of the endangered savanna tree Pterocarpus erinaceus (Fabaceae) in Burkina Faso. Journal for Nature Conservation: 126299. https://doi.org/10.1016/j.jnc.2022.126299

Species distribution modelling is gaining popularity due to significant habitat shifts in many plant and animal species caused by climate change. This issue is particularly pressing for species that provide significant ecosystem goods and services. A prominent case is the valuable African rosewood tree (Pterocarpus erinaceus) that is threatened in sub-Saharan Africa, while its present distribution, habitat requirements and the impact of climate change are not fully understood. This native species naturally occurs in various savanna types, but anthropogenic interventions have considerably reduced its natural populations in the past decades. In this study, ensemble modelling was used to predict the current and future distribution potential of the species in Burkina Faso. Fifty-four environmental variables were selected to describe its distribution in the years 2050 and 2070 based on the greenhouse gas concentration trajectories RCP4.5 and 8.5, and the general circulation models CNRM-CM5 and HadGEM2-CC. A network of protected areas in Burkina Faso was also included to assess how many of the suitable habitats may contribute to the conservation of the species. The factors isothermality (31%), minimum temperature of coldest month (31%), pH in H2O at horizon 0–5 cm (11%), silt content at horizon 60–100 cm (9.2%) and precipitation of warmest quarter (8%) were the most influential distribution drivers for the species. Under current climate conditions, potentially highly suitable habitats cover an area of 129,695 km2, i.e. 47% of Burkina Faso. The projected distribution under RCP4.5 and 8.5 showed that this area will decrease, and that the decline of the species will be pronounced. The two models used in this study forecast a habitat loss of up to 61% for P. erinaceus. Hence, development and implementation of a conservation program are required to save the species in its native range. This study will help land managers prioritise areas for protection of the species and avoid introducing it to inappropriate areas unless suitable conditions are artificially created through the management options applied.

Ripley, B. S., S. L. Raubenheimer, L. Perumal, M. Anderson, E. Mostert, B. S. Kgope, G. F. Midgley, and K. J. Simpson. 2022. CO 2 ‐fertilisation enhances resilience to browsing in the recruitment phase of an encroaching savanna tree. Functional Ecology. https://doi.org/10.1111/1365-2435.14215

CO2‐fertilisation is implicated in the widespread and significant woody encroachment of savannas due to CO2‐stimulated increases in belowground reserves that enhance sapling regrowth after fire. However, the effect of CO2 concentration ([CO2]) on tree responses to the other major disturbance in savannas, herbivory, is poorly understood. Herbivory‐responses cannot be predicted from fire‐responses, as herbivore effects occur earlier during establishment and are moderated by plant palatability and defence rather than belowground carbon accumulation.

Marcussen, T., H. E. Ballard, J. Danihelka, A. R. Flores, M. V. Nicola, and J. M. Watson. 2022. A Revised Phylogenetic Classification for Viola (Violaceae). Plants 11: 2224. https://doi.org/10.3390/plants11172224

The genus Viola (Violaceae) is among the 40–50 largest genera among angiosperms, yet its taxonomy has not been revised for nearly a century. In the most recent revision, by Wilhelm Becker in 1925, the then-known 400 species were distributed among 14 sections and numerous unranked groups. Here, we provide an updated, comprehensive classification of the genus, based on data from phylogeny, morphology, chromosome counts, and ploidy, and based on modern principles of monophyly. The revision is presented as an annotated global checklist of accepted species of Viola, an updated multigene phylogenetic network and an ITS phylogeny with denser taxon sampling, a brief summary of the taxonomic changes from Becker’s classification and their justification, a morphological binary key to the accepted subgenera, sections and subsections, and an account of each infrageneric subdivision with justifications for delimitation and rank including a description, a list of apomorphies, molecular phylogenies where possible or relevant, a distribution map, and a list of included species. We distribute the 664 species accepted by us into 2 subgenera, 31 sections, and 20 subsections. We erect one new subgenus of Viola (subg. Neoandinium, a replacement name for the illegitimate subg. Andinium), six new sections (sect. Abyssinium, sect. Himalayum, sect. Melvio, sect. Nematocaulon, sect. Spathulidium, sect. Xanthidium), and seven new subsections (subsect. Australasiaticae, subsect. Bulbosae, subsect. Clausenianae, subsect. Cleistogamae, subsect. Dispares, subsect. Formosanae, subsect. Pseudorupestres). Evolution within the genus is discussed in light of biogeography, the fossil record, morphology, and particular traits. Viola is among very few temperate and widespread genera that originated in South America. The biggest identified knowledge gaps for Viola concern the South American taxa, for which basic knowledge from phylogeny, chromosome counts, and fossil data is virtually absent. Viola has also never been subject to comprehensive anatomical study. Studies into seed anatomy and morphology are required to understand the fossil record of the genus.

Zhang, Q., J. Ye, C. Le, D. M. Njenga, N. R. Rabarijaona, W. O. Omollo, L. Lu, et al. 2022. New insights into the formation of biodiversity hotspots of the Kenyan flora. Diversity and Distributions. https://doi.org/10.1111/ddi.13624

Aim This study aimed to investigate the distribution patterns of plant diversity in Kenya, how climatic fluctuations and orogeny shaped them, and the formation of its β-diversity. Location Kenya, East Africa. Taxon Angiosperms. Methods We quantified patterns of turnover and nestedness components of phylogenetic β-diversity for angiosperm species among neighbouring sites using a well-resolved phylogenetic tree and extensive distribution records from public databases and other published sources. We applied clustering methods to delineate biota based on pairwise similarities among multiple sites and used a random assembly null model to assess the effects of species abundance distribution on phylogenetic β-diversity. Results The phylogenetic turnover of the Kenyan flora, intersecting with the biodiversity hotspots Eastern Afromontane, Coastal Forests of Eastern Africa, and Horn of Africa, shows a non-monotonic pattern along a latitudinal gradient that is strongly structured into volcanic and coastal areas. The other areas are mainly dominated by phylogenetic nestedness, even in the eastern part of the equatorial region parallel to the volcanic area. Phylogenetic diversity and phylogenetic structure analyses explain the mechanism of the observed phylogenetic turnover and nestedness patterns. We identified five phytogeographical regions in Kenya: the Mandera, Turkana, Volcanic, Pan Coastal and West Highland Regions. Conclusions Variations in turnover gradient and coexistence are highly dependent on the regional biogeographical history resulting from climatic fluctuations and long-lasting orogeny, which jointly shaped the biodiversity patterns of the Kenyan flora. The nestedness component dominated climatically unstable regions and is presumed to have been caused by heavy local species extinction and recolonization from the Volcanic Region. The high turnover component in climatically stable regions may have preserved old lineages and the prevalence of endemic species within narrow ranges.

Lannuzel, G., L. Pouget, D. Bruy, V. Hequet, S. Meyer, J. Munzinger, and G. Gâteblé. 2022. Mining rare Earth elements: Identifying the plant species most threatened by ore extraction in an insular hotspot. Frontiers in Ecology and Evolution 10. https://doi.org/10.3389/fevo.2022.952439

Conservation efforts in global biodiversity hotspots often face a common predicament: an urgent need for conservation action hampered by a significant lack of knowledge about that biodiversity. In recent decades, the computerisation of primary biodiversity data worldwide has provided the scientific community with raw material to increase our understanding of the shared natural heritage. These datasets, however, suffer from a lot of geographical and taxonomic inaccuracies. Automated tools developed to enhance their reliability have shown that detailed expert examination remains the best way to achieve robust and exhaustive datasets. In New Caledonia, one of the most important biodiversity hotspots worldwide, the plant diversity inventory is still underway, and most taxa awaiting formal description are narrow endemics, hence by definition hard to discern in the datasets. In the meantime, anthropogenic pressures, such as nickel-ore mining, are threatening the unique ultramafic ecosystems at an increasing rate. The conservation challenge is therefore a race against time, as the rarest species must be identified and protected before they vanish. In this study, based on all available datasets and resources, we applied a workflow capable of highlighting the lesser known taxa. The main challenges addressed were to aggregate all data available worldwide, and tackle the geographical and taxonomic biases, avoiding the data loss resulting from automated filtering. Every doubtful specimen went through a careful taxonomic analysis by a local and international taxonomist panel. Geolocation of the whole dataset was achieved through dataset cross-checking, local botanists’ field knowledge, and historical material examination. Field studies were also conducted to clarify the most unresolved taxa. With the help of this method and by analysing over 85,000 data, we were able to double the number of known narrow endemic taxa, elucidate 68 putative new species, and update our knowledge of the rarest species’ distributions so as to promote conservation measures.