Science Enabled by Specimen Data

Herrera, D. L., S. A. Navarrete, F. A. Labra, S. P. Castillo, and L. Opazo Mella. 2023. Functional biogeography of coastal marine invertebrates along the south‐eastern Pacific coast reveals latitudinally divergent drivers of taxonomic versus functional diversity. Ecography.

Characterizing the spatial structure of taxonomic and functional diversity (FD) of marine organisms across regional and latitudinal scales is essential for improving our understanding of the processes driving species richness and those that may constrain or enhance the set of species traits that define the functional structure of communities. Here, we present the functional diversity of coastal invertebrate macrofaunal species along the south‐eastern Pacific from 7°N to 56°S, describe spatial variation of species traits, and examine the relationship with environmental variables. For that, we defined the functional traits and distribution ranges of 2350 marine macroinvertebrates calculated eight metrics of FD. Random forest regression was applied to identify significant relationships between FD and six environmental variables. Finally, functional β‐turnover was estimated to detect alongshore shifts in functional structure and their coincidence with biogeographical domains. Our results show, in contrast with taxonomic richness that measures of trait differences, functional space and functional specialisation increase with latitude, while functional evenness exhibits a non‐linear shape, peaking at mid latitudes. Functional redundancy decreased significantly poleward, while indicators of vulnerability increase. In contrast to taxonomic richness, FD was tightly connected to variables indicative of stress and productivity, such as dissolved oxygen and nutrients. Sea surface temperature and coastal area best explained the increased FD redundancy and richness towards the tropics. The high spatial correlation between taxonomic and functional turnover suggests environmental filters play an important role in the functional structure of the seascape. Our findings suggest that processes favouring taxonomic richness are latitudinally divergent from those favouring functional diversity. Correlations with environmental variables suggest that increased sea surface temperature and measures of stability increase redundancy, while variations in dissolved oxygen and nutrients positively affect functional diversification. Moreover, the functional diversity patterns suggest low resilience of high latitude coastal ecosystems, which are heavily exploited and threatened by climate change, hence highlighting the urgent need for effective conservation policies.

Hamer, M., M. Kgatla, and B. Petersen. 2023. An assessment of collection specimen data for South African mountain plants and invertebrates. Transactions of the Royal Society of South Africa: 1–19.

South Africa is considered a megadiverse country, with exceptionally high plant and relatively high animal species richness and endemism. The country’s species have been surveyed and studied for over 200 years, resulting in extensive natural science collections and a vast number of scientific papers and books. This study assessed whether existing data portals provide access to occurrence data and investigated the extent of the data in Global Biodiversity Information Facility and its completeness for plants and selected invertebrate taxa. The main focus was preserved specimen data, but some observation data from iNaturalist were also considered for selected analyses. Records that include species-level identification and co-ordinates were mapped in QGIS to show the coverage of collection localities across the country. The records that fall within the mountain range spatial layer were then extracted and counted to identify density of records per mountain range for various taxa. Forty percent of plant records are from mountain localities, and the Atlantic Cape Fold Mountains had the highest density of records. Table Mountain has been extensively collected for plants and invertebrates. A large proportion of the records for invertebrates lacked species-level identification and co-ordinates, resulting in a low number of records for analyses. The accessible data are only a relatively small subset of existing collections, and digitisation and data upgrading is considered a high priority before collecting gaps can be addressed by targeted surveys.

Bharti, D. K., P. Y. Pawar, G. D. Edgecombe, and J. Joshi. 2023. Genetic diversity varies with species traits and latitude in predatory soil arthropods (Myriapoda: Chilopoda). Global Ecology and Biogeography.

Aim To investigate the drivers of intra-specific genetic diversity in centipedes, a group of ancient predatory soil arthropods. Location Asia, Australasia and Europe. Time Period Present. Major Taxa Studied Centipedes (Class: Chilopoda). Methods We assembled a database of 1245 mitochondrial cytochrome c oxidase subunit I sequences representing 128 centipede species from all five orders of Chilopoda. This sequence dataset was used to estimate genetic diversity for centipede species and compare its distribution with estimates from other arthropod groups. We studied the variation in centipede genetic diversity with species traits and biogeography using a beta regression framework, controlling for the effect of shared evolutionary history within a family. Results A wide variation in genetic diversity across centipede species (0–0.1713) falls towards the higher end of values among arthropods. Overall, 27.57% of the variation in mitochondrial COI genetic diversity in centipedes was explained by a combination of predictors related to life history and biogeography. Genetic diversity decreased with body size and latitudinal position of sampled localities, was greater in species showing maternal care and increased with geographic distance among conspecifics. Main Conclusions Centipedes fall towards the higher end of genetic diversity among arthropods, which may be related to their long evolutionary history and low dispersal ability. In centipedes, the negative association of body size with genetic diversity may be mediated by its influence on local abundance or the influence of ecological strategy on long-term population history. Species with maternal care had higher genetic diversity, which goes against expectations and needs further scrutiny. Hemispheric differences in genetic diversity can be due to historic climatic stability and lower seasonality in the southern hemisphere. Overall, we find that despite the differences in mean genetic diversity among animals, similar processes related to life-history strategy and biogeography are associated with the variation within them.

Gallagher, K. M., and P. G. Albano. 2023. Range contractions, fragmentation, species extirpations, and extinctions of commercially valuable molluscs in the Mediterranean Sea—a climate warming hotspot R. Selden [ed.],. ICES Journal of Marine Science.

Abstract The Mediterranean Sea is a global hotspot of climate warming and biodiversity loss where molluscs have provided valuable ecosystem services, such as provisioning and cultural value, since pre-historic times. A high rate of warming and range shift limitations due to the semi-enclosed nature of the basin raise concerns about molluscan population persistence in future climate scenarios. We modelled the future distribution of 13 Mediterranean species of molluscs subject to industrial fisheries exploitation on both the Mediterranean and Atlantic European coasts. We tested the hypothesis that range contractions, fragmentation, and species extirpations will become increasingly severe in the Mediterranean by modelling mid-century and end-century species distributions for four IPCC climate change scenarios. Already under mild emissions scenarios, substantial range contractions and fragmentation are projected in the Mediterranean, suggesting global extinctions by end-century for most endemic species. Colder deep waters do not act as refugia, contrary to expectations. Species also occurring along the Atlantic European coasts may benefit from warming through range expansions to higher latitudes or deeper waters. Most of the modeled species are already over-exploited, but their eradication from the Mediterranean will imply substantial financial losses and a profound cultural change in coastal communities.

Clemente, K. J. E., and M. S. Thomsen. 2023. High temperature frequently increases facilitation between aquatic foundation species: a global meta‐analysis of interaction experiments between angiosperms, seaweeds, and bivalves. Journal of Ecology.

Many studies have quantified ecological impacts of individual foundation species (FS). However, emerging data suggest that FS often co‐occur, potentially inhibiting or facilitating one another, thereby causing indirect, cascading effects on surrounding communities. Furthermore, global warming is accelerating, but little is known about how interactions between co‐occurring FS vary with temperature.Shallow aquatic sedimentary systems are often dominated by three types of FS: slower‐growing clonal angiosperms, faster‐growing solitary seaweeds, and shell‐forming filter‐ and deposit‐feeding bivalves. Here, we tested the impacts of one FS on another by analyzing manipulative interaction experiments from 148 papers with a global meta‐analysis.We calculated 1,942 (non‐independent) Hedges’ g effect sizes, from 11,652 extracted values over performance responses, such as abundances, growths or survival of FS, and their associated standard deviations and replication levels. Standard aggregation procedures generated 511 independent Hedges’ g that was classified into six types of reciprocal impacts between FS.We found that (i) seaweeds had consistent negative impacts on angiosperms across performance responses, organismal sizes, experimental approaches, and ecosystem types; (ii) angiosperms and bivalves generally had positive impacts on each other (e.g., positive effects of angiosperms on bivalves were consistent across organismal sizes and experimental approaches, but angiosperm effect on bivalve growth and bivalve effect on angiosperm abundance were not significant); (iii) bivalves positively affected seaweeds (particularly on growth responses); (iv) there were generally no net effects of seaweeds on bivalves (except for positive effect on growth) or angiosperms on seaweeds (except for positive effect on ‘other processes’); and (v) bivalve interactions with other FS were typically more positive at higher temperatures, but angiosperm‐seaweed interactions were not moderated by temperature.Synthesis: Despite variations in experimental and spatiotemporal conditions, the stronger positive interactions at higher temperatures suggest that facilitation, particularly involving bivalves, may become more important in a future warmer world. Importantly, addressing research gaps, such as the scarcity of FS interaction experiments from tropical and freshwater systems and for less studied species, as well as testing for density‐dependent effects, could better inform aquatic ecosystem conservation and restoration efforts and broaden our knowledge of FS interactions in the Anthropocene.

Korpanty, C. A., L. Hoffman, R. da C. Portilho-Ramos, J. Titschack, C. Wienberg, and D. Hebbeln. 2023. Decline in cold-water coral growth promotes molluscan diversity: A paleontological perspective from a cold-water coral mound in the western Mediterranean Sea. Frontiers in Marine Science 9.

Framework-forming scleractinian cold-water corals (CWCs) act as ecosystem engineers, building and supporting biodiversity hotspots in the deep sea worldwide. While spatial patterns and drivers of species distributions have been evaluated on modern CWC reefs, little is known about how reef diversity is affected by habitat variability over geologic time – the scale at which CWC reefs initiate, thrive, and decline. Using three CWC reef sediment cores as species diversity archives, we investigated temporal trends of molluscan diversity over the last ~13 kyr from a CWC mound in the Alboran Sea (western Mediterranean Sea) to evaluate (a) how spatial patterns of CWC-associated diversity are recorded in reef sediments, (b) the potential of CWC reefs as biodiversity hotspots when coral growth is flourishing and when it is not, and (c) which palaeoceanographic conditions or habitat characteristics may be driving biodiversity. Our results reveal that at the ecosystem scale ecological differences between CWC habitats are more pronounced than ecological signatures of molluscan assemblages associated with intervals of CWC framework (flourishing growth) or non-framework (negligible CWC growth). However, within habitats, significant differences emerge between these assemblages with lower molluscan diversity associated with flourishing CWC growth. Significant negative correlations between molluscan diversity and palaeoceanographic conditions conducive for CWC growth (high food availability, strong hydrodynamics, optimal bottom-water temperatures and salinities, and high aggradation rates indicative of flourishing CWC growth also imply that CWC growth and relevant environmental conditions contribute to reduced molluscan diversity. Additionally, high coral volume, used here as a proxy for habitat structural complexity, is positively correlated with molluscan diversity just as high habitat complexity is in living CWC reefs. Altogether, these patterns detected over geologic time resemble those observed spatially across living CWC reefs today – where competition with resources, particularly food, prevents high reef biodiversity in the immediate vicinity of dense living CWC colonies. Overall, our study demonstrates that (1) ecological paradigms of living CWCs are preserved in their sedimentary record, (2) flourishing CWC growth and conditions promoting CWC growth drive habitat-scale diversity patterns, and (3) a geological approach can be applied to study long-term diversity dynamics in CWC ecosystems.

Huber, B. A., G. Meng, J. Král, I. M. Ávila Herrera, M. A. Izquierdo, and L. S. Carvalho. 2023. High and dry: integrative taxonomy of the Andean spider genus Nerudia (Araneae: Pholcidae). Zoological Journal of the Linnean Society.

Abstract Ninetinae are a group of poorly known spiders that do not fit the image of ‘daddy long-legs spiders’ (Pholcidae), the family to which they belong. They are mostly short-legged, tiny and live in arid environments. The previously monotypic Andean genus Nerudia exemplifies our poor knowledge of Ninetinae: only seven adult specimens from two localities in Chile and Argentina have been reported in the literature. We found representatives of Nerudia at 24 of 52 localities visited in 2019, mostly under rocks in arid habitats, up to 4450 m a.s.l., the highest known record for Pholcidae. With now more than 400 adult specimens, we revise the genus, describing ten new species based on morphology (including SEM) and COI barcodes. We present the first karyotype data for Nerudia and for its putative sister-genus Gertschiola. These two southern South American genera share a X1X2X3Y sex chromosome system. We model the distribution of Nerudia, showing that the genus is expected to occur in the Atacama biogeographic province (no record so far) and that its environmental niche is phylogenetically conserved. This is the first comprehensive revision of any Ninetinae genus. It suggests that focused collecting may uncover a considerable diversity of these enigmatic spiders.

Chaudhary, C., J. M. Alfaro-Lucas, M. V. P. Simões, A. Brandt, and H. Saeedi. 2023. Potential geographic shifts in the coral reef ecosystem under climate change. Progress in Oceanography 213: 103001.

The coral reefs are the most diverse marine ecosystem in the world. Considering its contribution as a natural resource for humanity and global biodiversity, it is critical to understand its response to climatic change. To date, no global predictions have been made about potential ecosystem changes in relation to its inhabiting species. Predicting changes in species' climatic suitability under increasing temperature and comparing them among species would be the first step in understanding the geographic and taxonomic coherence and discrepancies that may occur within the ecosystem. Using 57 species-specific global climate suitability models (of corals, molluscs, fish, crustaceans, and polychaetes) under present and future climate scenarios (RCP 4.5 and 8.5), we compared the potential coherence and differences and their cumulative impact on the ecosystem in warm, cold, shallow, and deep waters.Under the climatic scenarios, nearly 90% of 30 warm-water species were predicted to lose their suitability in the parts of the Indo-west Pacific, the Coast of Northern Australia, the South China Sea, the Caribbean Sea, and the Gulf of Mexico, resulting in the overall southward shift in their distributions. In contrast, a mixed response occurred in 27 cold-water species, with most northern temperate/boreal ones increasing their suitability in the Arctic Ocean and the Arctic species declining overall. We noticed that irrespective of their taxonomic group, the species with wider distribution ranges (thermal and geographic) had larger predicted gains in their suitability than their stenothermal counterparts, suggesting an increase of generalist species and a decline of specialist (endemic) species of the ecosystem under a warming climate.Our coherent projections of species' climatic suitability in warm and cold habitats of the tropics, temperate, boreal, and the Arctic, represent significant taxonomic groups of the ecosystem. This might indicate mass extinction risk (local– in the tropics and northern temperate regions, and overall– in the Arctic) in native habitats and a high species turnover across the ecosystem under a warming climate. This may also destabilise predator–prey dynamics in the ecosystem, especially if foraging specialists dominate coral food webs and adversely affect the associated countries. Our global projections highlight the regions of species’ potential loss and gain; stakeholders could use the information to protect biodiversity and maintain human well-being.

Hausdorf, B. 2023. Distribution patterns of established alien land snail species in the Western Palaearctic Region. NeoBiota 81: 1–32.

AbstractEstablished alien land snail species that were introduced into the Western Palaearctic Region from other regions and their spread in the Western Palaearctic are reviewed. Thirteen of the 22 species came from North America, three from Sub-Saharan Africa, two from the Australian region, three probably from the Oriental Region and one from South America. The establishment of outdoor populations of these species was usually first seen at the western or southern rims of the Western Palearctic. Within Europe, the alien species usually spread from south to north and from west to east. The latitudinal ranges of the alien species significantly increased with increasing time since the first record of introduction to the Western Palearctic. The latitudinal mid-points of the Western Palaearctic and native ranges of the species are significantly correlated when one outlier is omitted. There is a general trend of poleward shifts of the ranges of the species in the Western Palaearctic compared to their native ranges. There are three reasons for these shifts: (1) the northward expansion of some species in Western Europe facilitated by the oceanic climate, (2) the impediment to the colonisation of southern latitudes in the Western Palaearctic due to their aridity and (3) the establishment of tropical species in the Mediterranean and the Middle East. Most of the species are small, not carnivorous and unlikely to cause serious ecological or economic damage. In contrast, the recently introduced large veronicellid slugs from Sub-Saharan Africa and the giant African snail Lissachatinafulica could cause economic damage in irrigated agricultural areas or greenhouses in the Mediterranean and the Middle East.

Bento, M., H. Niza, A. Cartaxana, S. Bandeira, J. Paula, and A. M. Correia. 2023. Mind the Gaps: Taxonomic, Geographic and Temporal Data of Marine Invertebrate Databases from Mozambique and São Tomé and Príncipe. Diversity 15: 70.

One of the best ways to share and disseminate biodiversity information is through the digitization of data and making it available via online databases. The rapid growth of publicly available biodiversity data is not without problems which may decrease the utility of online databases. In this study we analyze taxonomic, geographic and temporal data gaps, and bias related to existing data on selected marine invertebrate occurrences along the coastline of two African countries, Mozambique and São Tomé and Príncipe. The final marine invertebrate dataset comprises of 19.910 occurrences, but 32% of the original dataset occurrences were excluded due to data gaps. Most marine invertebrates in Mozambique were collected in seagrasses, whereas in São Tomé and Príncipe they were mostly collected offshore. The dataset has a temporal coverage from 1816 to 2019, with most occurrences collected in the last two decades. This study provides baseline information relevant to a better understanding of marine invertebrate biodiversity data gaps and bias in these habitats along the coasts of these countries. The information can be further applied to complete marine invertebrate data gaps contributing to design informed sampling strategies and advancing refined datasets that can be used in management and conservation plans in both countries.