Science Enabled by Specimen Data
Simon, A., D. Parker, J. A. Chimal-Ballesteros, J. Orlando, and B. Goffinet. 2024. The identity of the North American endemic Dendriscocaulon intricatulum and two southern South American cyanomorphs in the Peltigerales. The Bryologist 127. https://doi.org/10.1639/0007-2745-127.4.441
(no abstract available)
Buckner, M. A., S. T. Hoge, and B. N. Danforth. 2024. Forecasting the Effects of Global Change on a Bee Biodiversity Hotspot. Ecology and Evolution 14. https://doi.org/10.1002/ece3.70638
The Mojave and Sonoran Deserts, recognized as a global hotspot for bee biodiversity, are experiencing habitat degradation from urbanization, utility‐scale solar energy (USSE) development, and climate change. In this study, we evaluated the current and future distribution of bee diversity, assessed how protected areas safeguard bee species richness, and predicted how global change may affect bees across the region. Using Joint Species Distribution Models (JSDMs) of 148 bee species, we project changes in species distributions, occurrence area, and richness under four global change scenarios between 1971 and 2050. We evaluated the threat posed by USSE development and predicted how climate change will affect the suitability of protected areas for conservation. Our findings indicate that changes in temperature and precipitation do not uniformly affect bee richness. Lower elevation protected areas are projected to experience mean losses of up to 5.8 species, whereas protected areas at higher elevations and transition zones may gain up to 7.8 species. Areas prioritized for future USSE development have an average species richness of 4.2 species higher than the study area average, and lower priority “variance” areas have 8.2 more species. USSE zones are expected to experience declines of up to 8.0 species by 2050 due to climate change alone. Despite the importance of solitary bees for pollination, their diversity is often overlooked in land management decisions. Our results show the utility of JSDMs for leveraging existing collection records to ease the inclusion of data‐limited insect species in land management decision‐making.
Boyd, R. J., M. A. Aizen, R. M. Barahona‐Segovia, L. Flores‐Prado, F. E. Fontúrbel, T. M. Francoy, M. Lopez‐Aliste, et al. 2022. Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization efforts Y. Fourcade [ed.],. Diversity and Distributions 28: 1404–1415. https://doi.org/10.1111/ddi.13551
Aim Aggregated species occurrence data are increasingly accessible through public databases for the analysis of temporal trends in the geographic distributions of species. However, biases in these data present challenges for statistical inference. We assessed potential biases in data available through GBIF on the occurrences of four flower-visiting taxa: bees (Anthophila), hoverflies (Syrphidae), leaf-nosed bats (Phyllostomidae) and hummingbirds (Trochilidae). We also assessed whether and to what extent data mobilization efforts improved our ability to estimate trends in species' distributions. Location The Neotropics. Methods We used five data-driven heuristics to screen the data for potential geographic, temporal and taxonomic biases. We began with a continental-scale assessment of the data for all four taxa. We then identified two recent data mobilization efforts (2021) that drastically increased the quantity of records of bees collected in Chile available through GBIF. We compared the dataset before and after the addition of these new records in terms of their biases and estimated trends in species' distributions. Results We found evidence of potential sampling biases for all taxa. The addition of newly-mobilized records of bees in Chile decreased some biases but introduced others. Despite increasing the quantity of data for bees in Chile sixfold, estimates of trends in species' distributions derived using the postmobilization dataset were broadly similar to what would have been estimated before their introduction, albeit more precise. Main conclusions Our results highlight the challenges associated with drawing robust inferences about trends in species' distributions using publicly available data. Mobilizing historic records will not always enable trend estimation because more data do not necessarily equal less bias. Analysts should carefully assess their data before conducting analyses: this might enable the estimation of more robust trends and help to identify strategies for effective data mobilization. Our study also reinforces the need for targeted monitoring of pollinators worldwide.
Zigler, K., M. Niemiller, C. Stephen, B. Ayala, M. Milne, N. Gladstone, A. Engel, et al. 2020. Biodiversity from caves and other sub-terranean habitats of Georgia, USA. Journal of Cave and Karst Studies 82: 125–167. https://doi.org/10.4311/2019lsc0125
We provide an annotated checklist of species recorded from caves and other subterranean habitats in the state of Georgia, USA. We report 281 species (228 invertebrates and 53 vertebrates), including 51 troglobionts (cave-obligate species), from more than 150 sites (caves, springs, and wells). Endemism is high; of the troglobionts, 17 (33 % of those known from the state) are endemic to Georgia and seven (14 %) are known from a single cave. We identified three biogeographic clusters of troglobionts. Two clusters are located in the northwestern part of the state, west of Lookout Mountain in Lookout Valley and east of Lookout Mountain in the Valley and Ridge. In addition, there is a group of troglobionts found only in the southwestern corner of the state and associated with the Upper Floridan Aquifer. At least two dozen potentially undescribed species have been collected from caves; clarifying the taxonomic status of these organisms would improve our understanding of cave biodiversity in the state. Conservation concerns related to species found in Georgia caves are significant, with fourteen species (including 13 vertebrates) considered “High Priority Species” under the Georgia State Wildlife Action Plan, many of these species have additional state or federal protections. In addition, 17 invertebrate troglobionts (33 % of those known in the state) are considered “Critically Imperiled” by NatureServe. Several biologically important caves are not protected, these are an important conservation concern. However, remarkably, around one third of all caves in the state are on protected lands, including seven of the eight caves known to host ten or more troglobionts.
Zigler, K., M. Niemiller, C. Stephen, B. Ayala, M. Milne, N. Gladstone, A. Engel, et al. 2020. Biodiversity from caves and other sub-terranean habitats of Georgia, USA. Journal of Cave and Karst Studies 82: 125–167. https://doi.org/10.4311/2019LSC0125
We provide an annotated checklist of species recorded from caves and other subterranean habitats in the state of Georgia, USA. We report 281 species (228 invertebrates and 53 vertebrates), including 51 troglobionts (cave-obligate species), from more than 150 sites (caves, springs, and wells). Endemi…