Science Enabled by Specimen Data

En Santander, Colombia, asociado al valle del Magdalena Medio se presentan serranías con remanentes boscosos que contrastan con las zonas deforestadas de las partes bajas. Presentamos una serie (90 especímenes de 48 especies) de la Serranía de La Paz, Betulia, catalogada en la Colección de Ornitología del Museo de Historia Natural de la Universidad Industrial de Santander (UIS-AV) y que proviene principalmente de una expedición en 2023 con el objetivo de estudiar su avifauna a partir de especímenes. La composición de especies de esta serie se comparó con la de otras series de UIS-AV recolectadas recientemente en el Magdalena Medio, y con una serie recolectada en la misma serranía en 1956 cuya información fue obtenida en el GBIF. Nuestra serie de la Serranía de La Paz comparte más especies con un área de bosque continuo en Bolívar que con fragmentos de bosque en Santander. Aunque varias especies de la Serranía de La Paz se registran en otros sitios del Magdalena Medio, nuestra serie incluye a Cotinga nattererii, Trogon rufus y Trogon caligatus que son especies con pocos especímenes para Santander que fueron recolectados hace más de 70 años, además de Euphonia concinna que representa un registro novedoso para el departamento. El 90 % de las especies recolectadas en 1956 están en UIS-AV o se registraron en 2023, pero Psarocolius wagleri, Cacicus cela y Falco sparverius, estuvieron ausentes. La Serranía de La Paz tiene especies de aves características de bosques del Magdalena Medio y puede ser un sitio apropiado para conservarlas.

Carreón, M. A., A. Ramírez-Hernández, E. I. Badano, S. M. Gelviz-Gelvez, A. P. Martínez-Falcón, and F. Barragán. 2025. Modeling the spatial distribution of dung beetles under climate change scenarios: insights based on nesting strategy, body size and period of activity. Environmental Research Communications 7: 035019. https://doi.org/10.1088/2515-7620/adbdaf

Abstract Climate change is expected to exert varying effects on different taxa and species, affecting both their abundance and distribution ranges. Previous studies have used climate niche models (CNMs) to estimate shifts in the distribution of insects, without considering whether the effects of climate change may vary depending on their functional traits (nesting strategy, body size, and period of activity). Dung beetles, a taxonomic group characterized by using mammalian dung as their primary source of food (coprophagy), respond differently to temperature fluctuations depending on their nesting strategy and body size. In this study, we used CNMs to estimate shifts in the distribution ranges of 33 species of dung beetles under climate change scenarios (the shared socioeconomic pathways from the IPCC’s Sixth Assessment Report) for the period 2041–2060 in North America and Central America (excluding Canada due to absence of data). Additionally, we analyzed whether the effects of climate change on the distribution ranges of the studied species are significantly different depending on their functional traits. Our results showed that climate change will negatively affect the distribution range of the majority of the studied species by the middle of this century, with contrasting effects depending on their nesting strategy and body size. The smallest species and dwellers showed an increase in their occurrence probabilities and percentage of highly suitable habitats, whereas larger-bodied species and tunnelers showed a decrease in both. We found no significant differences between diurnal and nocturnal species. Our results show that by incorporating key traits related to temperature response and ecosystem function, we can analyze shifts in species distribution ranges more precisely, enabling the identification of patterns across functional categories and predictions about their future.

Kissell, R. E., M. T. Tercek, D. P. Thoma, and K. L. Legg. 2025. Predicted distribution of curl-leaf mountain mahogany (Cercocarpus ledifolius) in the Bighorn Canyon National Recreation Area J. A. Jones [ed.],. PLOS ONE 20: e0317146. https://doi.org/10.1371/journal.pone.0317146

Distributions of plants are expected to change in response to climate change, but the relative probability of that change is often unknown. Curl-leaf mountain mahogany (Cercocarpus ledifolius), an important browse species used by ungulates as forage and cover across the western US, is thought to be moderately to highly vulnerable to climate change this century, and a reduction in curl-leaf mountain mahogany occurrence may negatively impact ungulates reliant upon it. A combination of probability density estimation and vector analysis was used to predict curl-leaf mountain mahogany distribution across the species range relative to climate space and how that relationship would affect curl-leaf mountain mahogany at a local scale. Locally, we used the curl-leaf mountain mahogany population at the Bighorn Canyon National Recreation Area (BICA) in Montana and Wyoming for comparison. We modeled the probability of curl-leaf mountain mahogany occurrence across its distribution using water balance data to spatially and temporally assess the vulnerability of a population at a local scale. Modeled probabilities of occurrence and vector analysis indicated the species to remain in some areas within BICA but will be vulnerable in others given the predicted changes in temperature and precipitation in BICA if historical trajectories continue. This information allows managers to direct limited resources to other management actions by using the best available science to inform decisions. Other curl-leaf mountain mahogany populations currently inhabiting wetter, drier sites may follow a similar trajectory as the effects of climate change manifest. The approach used serves as a model to assess the predicted trend for species-specific plant communities of concern that may be adversely affected by climate change.

Thomas, L. G., and R. Prunier. 2024. Local adaptation and phenotypic plasticity drive leaf trait variation in the California endemic toyon (Heteromeles arbutifolia). American Journal of Botany 111. https://doi.org/10.1002/ajb2.16430

AbstractPremiseTo survive climate change and habitat loss, plants must rely on phenotypic changes in response to the environment, local adaptation, or migration. Understanding the drivers of intraspecific variation is critical to anticipate how plant species will respond to climate change and to inform conservation decisions. Here we explored the extent of local adaptation and phenotypic plasticity in Heteromeles arbutifolia, toyon, a species endemic to the California Floristic Province.MethodsWe collected leaves from 286 individuals across toyon's range and used seeds from 37 individuals to establish experimental gardens in the northern and southern parts of toyon's range. We measured leaf functional traits of the wild‐collected leaves and functional and fitness traits of the offspring grown in the experimental gardens. We then investigated the relationships between traits and source environment.ResultsMost traits we investigated responded plastically to the environment, and some traits in young seedlings were influenced by maternal effects. We found strong evidence that variation in leaf margins is a result of local adaptation to variation in temperature and temperature range. However, the source environment was not related to fitness traits or survival in the experimental gardens.ConclusionsOur findings reiterate the adaptive role of toothed leaf margins in colder and more seasonally variable environments. Additionally, we provide evidence that fitness of toyon is not dependent on where they are sourced, and thus toyon can be sourced across its range for restoration purposes.

Wu, D., C. Liu, F. S. Caron, Y. Luo, M. R. Pie, M. Yu, P. Eggleton, and C. Chu. 2024. Habitat fragmentation drives pest termite risk in humid, but not arid, biomes. One Earth 7: 2049–2062. https://doi.org/10.1016/j.oneear.2024.10.003

Predicting global change effects poses significant challenges due to the intricate interplay between climate change and anthropogenic stressors in shaping ecological communities and their function, such as pest outbreak risk. Termites are ecosystem engineers, yet some pest species are causing worldwide economic losses. While habitat fragmentation seems to drive pest-dominated termite communities, its interaction with climate change effect remains unknown. We test whether climate and habitat fragmentation interactively alter interspecific competition that may limit pest termite risk. Leveraging global termite co-occurrence including 280 pest species, we found that competitively superior termite species (e.g., large bodied) increased in large and continuous habitats solely at high precipitation. While competitive species suppressed pest species globally, habitat fragmentation drove pest termite risk only in humid biomes. Unfortunately, hu- mid tropics have experienced vast forest fragmentation and rainfall reduction over the past decades. These stressors, if not stopped, may drive pest termite risk, potentially via competitive release.

Noel, A., D. R. Schlaepfer, B. J. Butterfield, M. C. Swan, J. Norris, K. Hartwig, M. C. Duniway, and J. B. Bradford. 2024. Most Pinyon–Juniper Woodland Species Distributions Are Projected to Shrink Rather Than Shift Under Climate Change. Rangeland Ecology & Management. https://doi.org/10.1016/j.rama.2024.09.002

Pinyon–juniper (PJ) woodlands are among the most widespread ecosystems in rangelands of western North America, supporting diverse wildlife habitat, recreation, grazing, and cultural/spiritual enrichment. Anticipating future distribution shifts under changing climate will be critical to climate adaptation and conservation efforts in these ecosystems. Here, we evaluate drivers of PJ tree species’ distributions and project changes in response to future climate change. We developed species distribution models with dryland-focused predictors to project environmental suitability changes across the entirety of three pinyon and six juniper species ranges. We identify areas of robust suitability change by combining suitability projections from multiple emissions scenarios and time periods. PJ species’ suitabilities respond to many temperature and moisture covariates expected to change in the future. Projected responses among PJ species are highly variable, ranging from modest declines with concurrent gains for overall little net change to wide-ranging declines with no gains for overall range contractions. Environmental suitability is projected to decline broadly across the arid United States Southwest and remain relatively stable across the northern Great Basin and Colorado Plateau. Our results suggest unique responses of PJ species to future climate change. We found that species were projected to experience more losses than gains in suitability, for overall range shrinks rather than shifts. Land managers have the capacity to increase woodland resilience to drought, and our results can inform rangeland-wide management planning and conservation efforts in PJ woodlands.

Shirey, V., and J. Rabinovich. 2024. Climate change-induced degradation of expert range maps drawn for kissing bugs (Hemiptera: Reduviidae) and long-standing current and future sampling gaps across the Americas. Memórias do Instituto Oswaldo Cruz 119. https://doi.org/10.1590/0074-02760230100

BACKGROUND Kissing bugs are the vectors of Trypanosoma cruzi, the etiological agent of Chagas disease (CD). Despite their epidemiological relevance, kissing bug species are under sampled in terms of their diversity and it is unclear what biases exist in available kissing bug data. Under climate change, range maps for kissing bugs may become less accurate as species shift their ranges to track climatic tolerance. OBJECTIVES Quantify inventory completeness in available kissing bug data. Assess how well range maps are at conveying information about current distributions and potential future distributions subject to shift under climate change. Intersect forecasted changes in kissing bug distributions with contemporary sampling gaps to identify regions for future sampling of the group. Identify whether a phylogenetic signal is present in expert range knowledge as more closely related species may be similarly well or lesser understood. METHODS We used species distribution models (SDM), specifically constructed from Bayesian additive regression trees, with Bioclim variables, to forecast kissing bug distributions into 2100 and intersect these with current sampling gaps to identify priority regions for sampling. Expert range maps were assessed by the agreement between the expert map and SDM generated occurrence probability. We used classical hypothesis testing methods as well as tests of phylogenetic signal to meet our objectives. FINDINGS Expert range maps vary in their quality of depicting current kissing bug distributions. Most expert range maps decline in their ability to convey information about kissing bug occurrence over time, especially in under sampled areas. We found limited evidence for a phylogenetic signal in expert range map performance. MAIN CONCLUSIONS Expert range maps are not a perfect account of species distributions and may degrade in their ability to accurately convey distribution knowledge under future climates. We identify regions where future sampling of kissing bugs will be crucial for completing biodiversity inventories.

Caron, F. S., D. Rivadeneira, J. Rabinovich, M. R. Pie, and J. Morimoto. 2024. Range size positively correlates with temperature and precipitation niche breadths but not with dietary niche breadth in triatomine insects, vectors of Chagas disease K. Kirchgatter [ed.],. PLOS Neglected Tropical Diseases 18: e0012430. https://doi.org/10.1371/journal.pntd.0012430

Ecological theory predicts that species that can utilise a greater diversity of resources and, therefore, have wider niche breadths should also occupy larger geographic areas (the ‘niche breadth-range size hypothesis’). Here, we tested this hypothesis for a blood-sucking group of insects of medical significance: the Triatominae (aka ‘kissing bugs’) (Hemiptera: Reduviidae). Given that niches can be viewed from different perspectives, we tested this hypothesis based on both dietary and climatic niches. We assembled the most complete dataset of triatomine feeding patterns to date by reviewing 143 studies from the literature up to 2021 and tested whether the niche breadth-range size hypothesis held for this group for both dietary and climatic components of the niche. Temperature and precipitation niche breadths were estimated from macro-environmental variables, while diet breadth was calculated based on literature data that used PCR and/or ELISA to identify different types of hosts as blood sources per triatomine species. Our results showed that temperature and precipitation niche breadths, but not dietary breadth, were positively correlated with range sizes, independent of evolutionary history among species. These findings support the predictions from the range size-niche breadth hypothesis concerning climate but not diet, in Triatominae. It also shows that support for the niche breadth-range size hypothesis is dependent upon the niche axis under consideration, which can explain the mixed support for this hypothesis in the ecological literature.

Lizardo, V., F. Escobar, E. Martínez‐Meyer, and J. J. Morrone. 2024. Adaptive shifts in Phanaeini dung beetles of the Mexican plateau cenocron in the Mexican transition zone. Zoologica Scripta. https://doi.org/10.1111/zsc.12656

The Mexican Transition Zone is a biogeographically complex area where old and new lineages of Neotropical and Nearctic affinities overlap. Its biota was assembled by successive dispersal events of cenocrons, which are sets of taxa that dispersed during a given time interval from both North and South America and then diversified in the area. The Mexican Plateau cenocron, with Neotropical affinities, is found in temperate and dry climates in the Nearctic region. We hypothesised that it underwent an adaptive shift in environmental niche. We tested this hypothesis using a phylogenetic comparative framework, measuring phylogenetic signal and fitting to single optima macroevolutionary models, and an Ornstein‐Uhlenbeck macroevolutionary model with multiple optima. We used phylogenetic and distributional information of the tribe Phanaeini to assess whether there exists a distinction in conservatism between the earliest (Mexican Plateau) and most recent (Typical Neotropical) cenocrons within the Mexican Transition Zone (MTZ) as this tribe stands as a classic example of the dispersal and diversification patterns of cenocrons originating in the Neotropics. We identified different shifts in environmental requirements that match the niche description of the Mexican Plateau cenocron, suggesting that it was established through multiple adaptive shifts in the Mexican Transition Zone.

Brunner, A., J. R. G. Márquez, and S. Domisch. 2024. Downscaling future land cover scenarios for freshwater fish distribution models under climate change. Limnologica 104: 126139. https://doi.org/10.1016/j.limno.2023.126139

The decreasing freshwater biodiversity trend can be attributed to anthropogenic impacts in terms of climate and land cover change. For targeted conservation efforts, mapping and understanding the distribution of freshwater organisms consists of an important knowledge gap. Spatial modelling approaches offer valuable insights into present-day biodiversity patterns and potential future trajectories, however methodological constraints still hamper the applicability of addressing future climate and land cover change concurrently in one modelling workflow. Compared to climate-only projections, spatially explicit and high-resolution land cover projections have seen less attention, and the lack of such data challenges modelling efforts to predict the possible future effects of land cover change especially on freshwater organisms. Here we demonstrate a workflow where we downscale future land cover projection data from the Shared Socioeconomic Pathway (SSP) scenarios for South America at 1 km2 spatial resolution, to then predict the future habitat suitability patterns of the Colombian fish fauna. Specifically, we show how the land cover data can be converted from plain numbers into a spatially explicit representation for multiple SSP scenarios and at high spatial resolution, employing freshwater-specific downscaling aspects when spatially allocating the land cover category grid cells, and how it can be fitted into an ensemble species distribution modelling approach of 1209 fish species. Our toolbox consists of a suite of open-source tools, including Dinamica EGO, R, GRASS GIS and GDAL, and we provide the code and necessary steps to reproduce the workflow for other study areas. We highlight the feasibility of the downscaling, but also underline the potential challenges regarding the spatial scale and the size of the spatial units of analysis.