Science Enabled by Specimen Data

Climate change is a global phenomenon that will generate profound changes in biodiversity in the near future. Studies have reported negative impacts of climate change for South American amphibians; however, for Andean species such as Rhinella spinulosa, the potential response to the effects of climate change is unknown. Using ecological niche models, we estimate the potential distribution of R. spinulosa, identifying the environmental variables that explain its distribution and projecting predictions in climate change scenarios to elucidate their impact on the distribution pattern. The results revealed that the variables of elevation (48.7%), mean temperature of the hottest quarter (44.2%), and topographic humidity index (3.2%) were the most important contributors to the model and are predictors of the distribution of R. spinulosa. The most suitable areas for its distribution are its current range, extending to the north, as well as on the western Andean slope and Argentine Patagonia. Predictions for the future (year 2080) under two scenarios (benign and severe) coincide with the distribution predicted for the current one. Climatic conditions will not be considerably different in the distribution area of R. spinulosa, which may be due to the buffer effect of the mountain range. However, freshwater ecosystems will be more at risk from climate change, which could affect the reproductive success and survival of amphibians. Therefore, we recommend evaluating water availability at a local scale to understand the potential changes in the geographic distribution of R. spinulosa.

Moreno, I., J. M. W. Gippet, L. Fumagalli, and P. J. Stephenson. 2022. Factors affecting the availability of data on East African wildlife: the monitoring needs of conservationists are not being met. Biodiversity and Conservation. https://doi.org/10.1007/s10531-022-02497-4

Understanding the status and abundance of species is essential for effective conservation decision-making. However, the availability of species data varies across space, taxonomic groups and data types. A case study was therefore conducted in a high biodiversity region—East Africa—to evaluate data biases, the factors influencing data availability, and the consequences for conservation. In each of the eleven target countries, priority animal species were identified as threatened species that are protected by national governments, international conventions or conservation NGOs. We assessed data gaps and biases in the IUCN Red List of Threatened Species, the Global Biodiversity Information Facility and the Living Planet Index. A survey of practitioners and decision makers was conducted to confirm and assess consequences of these biases on biodiversity conservation efforts. Our results showed data on species occurrence and population trends were available for a significantly higher proportion of vertebrates than invertebrates. We observed a geographical bias, with higher tourism income countries having more priority species and more species with data than lower tourism income countries. Conservationists surveyed felt that, of the 40 types of data investigated, those data that are most important to conservation projects are the most difficult to access. The main challenges to data accessibility are excessive expense, technological challenges, and a lack of resources to process and analyse data. With this information, practitioners and decision makers can prioritise how and where to fill gaps to improve data availability and use, and ensure biodiversity monitoring is improved and conservation impacts enhanced.

Inman, R. D., T. C. Esque, and K. E. Nussear. 2022. Dispersal limitations increase vulnerability under climate change for reptiles and amphibians in the southwestern United States. The Journal of Wildlife Management. https://doi.org/10.1002/jwmg.22317

Species conservation plans frequently rely on information that spans political and administrative boundaries, especially when predictions are needed of future habitat under climate change; however, most species conservation plans and their requisite predictions of future habitat are often limited in geographical scope. Moreover, dispersal constraints for species of concern are not often incorporated into distribution models, which can result in overly optimistic predictions of future habitat. We used a standard modeling approach across a suite of 23 taxa of amphibians and reptiles in the North American deserts (560,024 km2 across 13 ecoregions) to assess impacts of climate change on habitat and combined landscape population dispersal simulations with species distribution modeling to reduce the risk of predicting future habitat in areas that are not available to species given their dispersal abilities. We used 3 general circulation models and 2 representative concentration pathways (RCPs) to represent multiple scenarios of future habitat potential and assess which study species may be most vulnerable to changes forecasted under each climate scenario. Amphibians were the most vulnerable taxa, but the most vulnerable species tended to be those with the lowest dispersal ability rather than those with the most specialized niches. Under the most optimistic climate scenario considered (RCP 2.6; a stringent scenario requiring declining emissions from 2020 to near zero emissions by 2100), 76% of the study area may experience a loss of >20% of the species examined, while up to 87% of the species currently present may be lost in some areas under the most pessimistic climate scenario (RCP 8.5; a scenario wherein greenhouse gases continue to increase through 2100 based on trajectories from the mid‐century). Most areas with high losses were concentrated in the Arizona and New Mexico Plateau ecoregion, the Edwards Plateau in Texas, and the Southwestern Tablelands in New Mexico and Texas, USA. Under the most pessimistic climate scenario, all species are predicted to lose some existing habitat, with an average of 34% loss of extant habitat across all species. Even under the most optimistic scenario, we detected an average loss of 24% of extant habitat across all species, suggesting that changing climates may influence the ranges of reptiles and amphibians in the Southwest.

Kaptyonkina, A. G., T. N. Dujsebayeva, K. M. Akhmedenov, V. A. Khromov, V. N. Krainyuk, F. Sarzhanov, S. V. Starikov, et al. 2022. The range of marsh frogs (complex Pelophylax ridibundus, Amphibia, Ranidae) in Kazakhstan: Progressive dispersal or cyclic fluctuations? Proceedings of the Zoological Institute RAS 326: 211–238. https://doi.org/10.31610/trudyzin/2022.326.3.211

According to 2005 data, during the second half of the 20th century, the range of marsh frogs (Pelophylax ridibundus complex) in Kazakhstan almost doubled, which was facilitated by the unintentional introduction of these amphibians in the central and eastern regions of the country against the backdrop of favorable climate change. This paper analyzes the results of the next monitoring of the distribution of the marsh frogs in Kazakhstan in the light of the hypothesis of the ongoing dispersal of amphibians throughout the country. During the revision of literature, museum and archival materials over the past 15 years and the analysis of the authors’ field data for 2021, about 500 amphibian sighting points were collected, which is almost 2 times higher than previously known information. It has been established that the modern range of the complex occupies the territory of all major hydrographic basins of Kazakhstan: The Ural-Emba, Aral-Syrdarya, Nura-Tengiz, Balkhash-Alakol, Tobol-Ishim and Irtysh basins, of which only the last two belong to the area of oceanic runoff, the rest are the drainless inland. A chronological analysis of the data obtained for each basin made it possible to conclude that over the historical period the area of the marsh frogs’ range has changed, but mainly due to periodic reductions or expansions within the drainless inland basins, the level and mineralization of water bodies of which are determined by cyclic climate fluctuations. In a broad sense, it is proposed to talk about the constancy of the autochthonous range of the marsh frogs in the west, south and southeast of Kazakhstan. The phenomenon of “settlement” includes the movements of lake frogs within the Nura-Tengiz and Irtysh basins, where they did not live in the historical past. In geological retrospect, this process probably restores the boundaries of the Neogene distribution of representatives of the P. ridibundus complex. From the point of view of the genetic composition of the complex, one can speak of the dispersal or even expansion of the Anatolian P. cf. bedriagae, which has successfully advanced to all regions of Kazakhstan from the eastern borders of its autochthonous range in the Caspian Plain and the coasts of the Mangyshlak Peninsula.

Oliveira-Dalland, L. G., L. R. V. Alencar, L. R. Tambosi, P. A. Carrasco, R. M. Rautsaw, J. Sigala-Rodriguez, G. Scrocchi, and M. Martins. 2022. Conservation gaps for Neotropical vipers: Mismatches between protected areas, species richness and evolutionary distinctiveness. Biological Conservation 275: 109750. https://doi.org/10.1016/j.biocon.2022.109750

The continuous decline in biodiversity despite global efforts to create new protected areas calls into question the effectiveness of these areas in conserving biodiversity. Numerous habitats are absent from the global protected area network, and certain taxonomic groups are not being included in conservation planning. Here, we analyzed the level of protection that the current protected area system provides to viper species in the Neotropical region through a conservation gap analysis. We used distribution size and degree of threat to set species-specific conservation goals for 123 viper species in the form of minimum percentage of their distribution that should be covered by protected areas, and assessed the level of protection provided for each species by overlapping their distribution with protected areas of strict protection. Furthermore, using species richness and evolutionary distinctiveness as priority indicators, we conducted a spatial association analysis to detect areas of special concern. We found that most viper species have <1/4 of their distribution covered by protected areas, including 22 threatened species. Also, the large majority of cells containing high levels of species richness were significantly absent from protected areas, while evolutionary distinctiveness was particularly unprotected in regions with relatively low species richness, like northern Mexico and the Argentinian dry Chaco. Our results provide further evidence that vipers are largely being excluded from conservation planning, leaving them exposed to serious threats that can lead to population decline and ultimately extinction.

Castaño-Quintero, S. M., J. Escobar-Luján, F. Villalobos, L. M. Ochoa-Ochoa, and C. Yáñez-Arenas. 2022. Amphibian Diversity of the Yucatan Peninsula: Representation in Protected Areas and Climate Change Impacts. Diversity 14: 813. https://doi.org/10.3390/d14100813

Knowledge about the dynamics of regional diversity patterns is a foundation on which measures aimed to protect diversity dimensions in the light of climate change can be constructed. Here, we describe taxonomic, phylogenetic, and functional diversity patterns of amphibians in the Yucatan Peninsula and their representation in the current protected area system. We stacked current and future potential distribution models to estimate taxonomic diversity and, based on the most recent amphibian phylogeny and nine functional traits, we measured phylogenetic and functional diversity. Independent phylogenetic and functional metrics were obtained by applying null models that allowed us to identify the presumably signature mechanisms underlying assemblage formation. We evaluated the effectiveness of the protected areas in protecting diversity dimensions across scenarios. We found phylogenetic and functional clustering as a result of environmental filters that have allowed only recently diverged species with converged functional traits to establish. Nevertheless, random assemblages are more widespread possibly due to the opposite directions in which competition and environmental filtering are acting. Overall, a decrease in all diversity dimensions is projected under future climate change scenarios compared with the current time. None of the protected areas evaluated were effective in protecting diversity dimensions, stressing the need to complete the existing protected areas network.

Medina-Castañeda, C. I., V. M. Bravo-Cuevas, and J. A. Cruz. 2022. Turtles from the Late Pleistocene of Hidalgo and Puebla and their paleobiogeographic and paleoclimatic significance. Quaternary International. https://doi.org/10.1016/j.quaint.2022.07.008

We describe and identify fossil material of turtles recovered from several Pleistocene localities of Hidalgo and Puebla. A comparative study with selected specimens of extant and extinct turtles revealed that the fossil sample evidences two families (Kinosternidae and Testudinidae), three genera (Kinosternon, Gopherus, and aff. Hesperotestudo), and two species (K. flavescens and G. berlandieri). This record supplements their occurrence in the country, being common inhabitants of central Mexico. We performed a paleoclimatic reconstruction of the Valsequillo Basin using the Mutual Ecogeographic Range (MER) method, given that in this area the fossil material was identified to species level, including K. flavescens and G. berlandieri. The potential climatic conditions based on the distribution model and the current habitats of these turtles suggest that the climate was warmer with similar precipitation (21.99 °C mean annual temperature and 623 mm mean annual precipitation) in comparison to the current ones (17 °C mean annual temperature and 622.2 mm mean annual precipitation). By the same token, the presence of xerophytic thickets and desert areas suitable for G. berlandieri, associated with bodies of water inhabited by K. flavescens, is proposed.

Jablonski, D., R. Masroor, and S. Hofmann. 2022. On the edge of the Shivaliks: An insight into the origin and taxonomic position of Pakistani toads from the Duttaphrynus melanostictus complex (Amphibia, Bufonidae). Zoosystematics and Evolution 98: 275–284. https://doi.org/10.3897/zse.98.79213

AbstractThe common Asian toad Duttaphrynusmelanostictus (Schneider, 1799) complex has a wide distribution ranging from western foothills of the Himalaya to the easternmost range of the Wallacea, with the evidence of human-mediated introductions to some other areas. In the entire distribution range, the complex is formed by several evolutionary clades, distributed mostly in South-East Asia with unresolved taxonomy. In the northwestern edge of its distribution (Pakistan), the name D.melanostictushazarensis (Khan, 2001) has been assigned to local populations but its biological basis remained, so far, understudied and unvalidated. Therefore, we re-evaluated the available genetic data (mitochondrial and nuclear) to show the relationships between Pakistani populations (including the type locality of D.m.hazarensis) and others from across the range. Our results showed that Pakistani populations are associated with one, deeply diverged, well-supported and widely distributed clade (so-called Duttaphrynus sp. 1 according to 16S, or clade B based on tRNAGly-ND3), that has already been detected in previous studies. This clade is further distributed in India, Nepal, Bangladesh, Malaysia, Singapore, and Indonesia and is characterized by a low level of genetic variability. This further suggests that both natural, as well as potential human-mediated dispersal, might have played an important role in setting up the current phylogeographic and distribution pattern of this clade. The clade is deeply divergent from other clades of the complex and represents a taxonomically unresolved entity. We here argue that the clade Duttaphrynus sp. 1/B represents a distinct species for which the name Duttaphrynusbengalensis (Daudin, 1802) comb. nov. is applicable, while the description of D.m.hazarensis does not satisfy the rules of the International Code of Zoological Nomenclature.

González-Fernández, A., C. González-Salazar, A. Sunny, F. Ruíz-Gutiérrez, and C. Chávez. 2022. Determination of priority areas for amphibian conservation in Guerrero (Mexico), through systematic conservation planning tools. Journal for Nature Conservation 68: 126235. https://doi.org/10.1016/j.jnc.2022.126235

Guerrero is one of the most diverse states of Mexico, containing a large number of endemic and endangered amphibian species. However, it is one of the less protected and studied states of the country. Here, we determined the potential distribution of all amphibian species in a risk category present in Guerrero and defined priority areas for amphibian conservation in the state. We modelled the potential distribution of 32 species using the maximum entropy modelling algorithm. These models were used to define priority areas through systematic conservation planning tools. The most important variables explaining species’ potential distribution were measures of climate variability, particularly temperature seasonality. The priority areas for amphibian conservation identified covered a total area of 12,212.72 km2 and contained an important proportion (almost a third) of the cloud mountain forests of the state. The most important planning units for meeting species targets and the most important planning units in terms of biodiversity overlapped in approximately the same planning units, located in the biogeographic regions of the Sierra Madre del Sur and the Pacific Coast. Finally, from the total priority areas identified, only 0.31% (38.17 km2) is currently protected within the existing natural protected areas in Guerrero. Thus, we consider that it is essential to protect additional natural areas in the state. Areas Voluntarily Destined for Conservation (ADVC) may be a good option; however, action must be taken to ensure the legitimacy of the processes by the local people and to avoid privileging only certain members of the community.

Rautsaw, R. M., G. Jiménez-Velázquez, E. P. Hofmann, L. R. V. Alencar, C. I. Grünwald, M. Martins, P. Carrasco, et al. 2022. VenomMaps: Updated species distribution maps and models for New World pitvipers (Viperidae: Crotalinae). Scientific Data 9. https://doi.org/10.1038/s41597-022-01323-4

Beyond providing critical information to biologists, species distributions are useful for naturalists, curious citizens, and applied disciplines including conservation planning and medical intervention. Venomous snakes are one group that highlight the importance of having accurate information given their cosmopolitan distribution and medical significance. Envenomation by snakebite is considered a neglected tropical disease by the World Health Organization and venomous snake distributions are used to assess vulnerability to snakebite based on species occurrence and antivenom/healthcare accessibility. However, recent studies highlighted the need for updated fine-scale distributions of venomous snakes. Pitvipers (Viperidae: Crotalinae) are responsible for >98% of snakebites in the New World. Therefore, to begin to address the need for updated fine-scale distributions, we created VenomMaps, a database and web application containing updated distribution maps and species distribution models for all species of New World pitvipers. With these distributions, biologists can better understand the biogeography and conservation status of this group, researchers can better assess vulnerability to snakebite, and medical professionals can easily discern species found in their area. Measurement(s) Species Distributions Technology Type(s) Geographic Information System • Species Distribution Model (MaxEnt/kuenm) Factor Type(s) Occurrence Records • Environmental Data Sample Characteristic - Organism Crotalinae Sample Characteristic - Location North America • South America