Science Enabled by Specimen Data
[NO TITLE AVAILABLE] https://doi.org/10.22201/fc.25942158e.2025.1.1053
En este escrito se registra una localidad nueva en el estado de Yucatán para la especie Pliocercus elapoides, dicho registro amplia la distribución conocida 75 km al sureste del registro mas próximo, del mismo modo se discute la correcta georreferenciación de registros de importancia en colecciones científicas; este registro reitera la necesidad de aumentar el esfuerzo de muestreo en la zona sur del estado de Yucatán para de este modo complementar la distribución de esta y otras especies de herpetofauna.
Venegas-Barrera, C. S., J. Manjarrez, Á. Rodríguez-Moreno, Y. A. Mendoza-Walle, J. V. Horta-Vega, I. R. Rodríguez-deLeón, A. Sunny, and A. Azuara Domínguez. 2024. Representativeness, Complementarity, and Degree of Local Extirpation Risk for Thamnophis Species Inside and Outside of Protected Areas of Mexico. Ecologies 5: 697–715. https://doi.org/10.3390/ecologies5040041
Protected areas (PAs) are geographical spaces intended to conserve populations, communities, and ecosystems, in which species richness must be maximized, the conserved area must be minimized, and anthropogenic pressure must be reduced. The present study analyzed the representativeness, complementarity, and degree of risk of 25 garter snake species of the genus Thamnophis in the PAs of Mexico. This study proposes that at least 17% of the potential geographic distribution (PGD) of species will be found inside PAs and in areas (Aichi Target 11) with a low human footprint (HF). The PGD of species was associated with the PAs and HF layers to identify where and which species could be at local extirpation risk by human activities. The results indicate that the federal PAs contain 85.2% of the species, while the state PAs contain 77.7% of the species. An average of 13.4% of the PGD of these species is found inside PAs, and two species are found outside. In 13 federal PAs and 10 state PAs, the Thamnophis species present high local extirpation risk from human activities. In total, 37% of species are found in PAs with a medium to very high human footprint; therefore, their persistence could be at local extirpation risk. Compared to other taxa, species of the genus Thamnophis are well represented. However, the PDG of more than half of the species achieves Aichi Target 11.
Patrón-Rivero, C., L. Osorio-Olvera, O. Rojas-Soto, X. Chiappa-Carrara, F. Villalobos, B. Bessesen, K. López-Reyes, and C. Yañez-Arenas. 2024. Global analysis of the influence of environmental variables to explain ecological niches and realized thermal niche boundaries of sea snakes M. Schubert [ed.],. PLOS ONE 19: e0310456. https://doi.org/10.1371/journal.pone.0310456
Understanding the factors affecting species distributions is a central topic in ecology and biogeography. However, most research on this topic has focused on species inhabiting terrestrial environments. At broad scales, abiotic variables consistently serve as primary determinants of species’ distributions. In this study, we investigated the explanatory power of different abiotic variables in determining the distribution patterns of sea snakes on a global scale. Additionally, as the boundaries of realized thermal niches have significant implications for the ecology of species and their geographic distributions, we evaluated the asymmetry of realized thermal limits (i.e., differences in variances between the upper and lower limits of the realized thermal niche). We obtained 10 marine environmental variables from global databases along with >5000 occurrence records for 51 sea snake species in 4 genera across the group’s entire known geographic range. Using these data, we employed correlative ecological niche modeling to analyze the influence of the individual variables in explaining species’ distributions. To estimate the realized thermal limits of each species, we extracted the mean, minimum, and maximum temperature values at four depths (superficial, mean benthic, minimum benthic, and maximum benthic) for each occurrence record of the species. We then evaluated the asymmetry of the realized thermal niche by measuring and comparing the variances in the upper and lower limits. Both analyses (the importance of variables and realized thermal limit asymmetry) were performed at three taxonomic levels (sea snakes as a lineage of marine-adapted elapids [true sea snakes + sea kraits], subfamily, and genus) and two spatial resolutions. Overall, we found that temperature, silicate, nitrate, salinity, and phosphate concentrations were the most influential factors in explaining the spatial distribution patterns of sea snakes, regardless of taxonomic level or spatial resolution. Similarly, we observed that the realized thermal limits were asymmetric, with a higher variance in the lower limits, and that asymmetry decreased as the taxonomic level and spatial resolution increased.
Aguilar‐Sánchez, J. A., and M. Kolb. 2024. Co‐benefits between biodiversity and hydrological ecosystem services allow an efficient conservation planning proposal for the Riviera Maya, Mexico. Conservation Science and Practice 6. https://doi.org/10.1111/csp2.13266
Including biodiversity and ecosystem services (ES) spatial priorities in reserve design through quantitative methods known as systematic conservation planning has been proposed to identify spatial solutions that achieve both elements in a spatially efficient manner. The aim of this study is to evaluate the differences between priority sites for biodiversity and hydrological ecosystem services (HES) and to identify opportunities for co‐benefits that allow an efficient conservation planning proposal, using as a case study the Riviera Maya, Mexico. The results confirm the following: (1) biodiversity and HES priority sites have different spatial patterns, sharing only 24% of priority sites; (2) HES priority sites achieve a high percentage (95%) of biodiversity conservation targets, showing that they can potentially be used for biodiversity representation; and (3) integrating HES and biodiversity into one model is more efficient to represent conservation targets than considering both elements individually (46% vs. 66% of the study area). These results reflect the lack of irreplaceable sites for biodiversity conservation, and as <8% of the study area is currently covered by protected areas, this means that there are numerous opportunities to align cobenefits of biodiversity and HES conservation actions.
Koen, E. L., W. J. Barichivich, E. C. Braun de Torrez, and S. C. Walls. 2024. Sea level rise threatens Floridaâs insular vertebrate biodiversity. Biodiversity and Conservation. https://doi.org/10.1007/s10531-024-02984-w
Islands are some of the most biodiverse places on earth, but they are also hotspots of biodiversity loss. The coastline of Florida, U.S.A., is surrounded by thousands of islands, many of which are home to species that occur nowhere else. A rapidly emerging threat to these low-lying islands is inundation as sea levels rise. The capacity of island-dwelling species to adapt to climate change and sea level rise may be limited because many species do not have the ability to shift their distribution off the island to track favorable conditions. We assessed the vulnerability of Florida’s islands to inundation from sea level rise and estimated the terrestrial biodiversity on Florida’s islands that could be lost. Our models predicted that by 2100, over 80% and up to 90% of Florida’s islands could be completely inundated from sea level rise, depending on the sea level rise projection (1.2 m or 2.2 m). Of the 85 mammalian, reptilian, and amphibian species on our subset list of Florida’s Species of Greatest Conservation Need, over half occur on Florida’s islands for at least part of their range, highlighting the importance of these islands for housing Florida’s rich biodiversity. Notably, at least 12 mammal species and 7 reptile species have their entire distribution on Florida’s islands, and this count is likely an underestimate. Projections of future sea level rise mean that these island-endemic species face the threat of extinction in the wild if their island habitat is submerged.
Encarnación-Luévano, A., J. J. Sigala-Rodríguez, G. E. Quintero-Díaz, M. Silva-Briano, and O. Rojas-Soto. 2024. The Effect of Climate Change on Spatio-Temporal Activity in Burrowing Frogs of the Smilisca Group. Acta Herpetologica. https://doi.org/10.36253/a_h-15232
Measuring the potential effects of future climate changes on the spatio-temporal variance of optimal conditions for seasonal species is a key conservation issue. This study assesses the impact of climate change on the spatial and temporal patterns of optimal conditions for activity in two burrowing frogs, Smilisca fodiens and S. dentata. Ecological Niche Modeling was used to implement niche seasonality models, with calibration performed during the peak activity (July). These models were then transferred to current and future conditions for the remainder of the year, predicting future scenarios up to 2070 with an intermediate trajectory greenhouse gas concentration of 4.5 W/m2. Climate change transferability was assessed for four potential scenarios: 1) high precipitation and low temperature, 2) high precipitation and high temperature, 3) low precipitation and low temperature, and 4) low precipitation and high temperature. We examined the impact across future projected areas and analyzed geographic change trends based on latitude, longitude, and elevation. For both species, the best scenario would involve increased precipitation in the future. However, the worst-case would be a combination of reduced precipitation and higher temperatures. Due to large area loss, northern populations of S. fodiens may be highly vulnerable. Concerning S. dentata, the outlook is worrisome, with all known populations experiencing losses in most months. Area gains may not help either species since they tend to occur at elevations above their known ranges. Using a seasonal approach in spatio-temporal analysis enhances comprehension of the behavioral adaptations of seasonal species and their vulnerability to current and future climatic variations
Tu, W., Y. Du, Y. E. Stuart, Y. Li, Y. Wang, Q. Wu, B. Guo, and X. Liu. 2024. Biological invasion is eroding the unique assembly of island herpetofauna worldwide. Biological Conservation 300: 110853. https://doi.org/10.1016/j.biocon.2024.110853
Island ecosystems have significant conservation value owing to their higher endemic biotas. Moreover, studies of regional communities that compare differences in species composition (species dissimilarity) among islands and the mainland suggest that community assembly on islands is different from that on the mainland. However, the uniqueness of island biotic assembly has been little studied at the global scale, nor have phylogenetic information or alien species been considered in these patterns. We evaluate taxonomic and phylogenetic change from one community to the next, focusing on differences in species composition between mainland-mainland (M-M) pairs compared to differences between mainland-island pairs (M-I) and between island-island pairs (I-I), using herpetofauna on islands and adjacent mainland areas worldwide. Our analyses detect greater taxonomic and phylogenetic dissimilarity for M-I and I-I comparisons than predicted by M-M model, indicating different island herpetofauna assembly patterns compared with mainland counterparts across the world. However, this higher M-I dissimilarity has been significantly decreased after considering alien species. Our results provide global evidence on the importance of island biodiversity conservation from the aspect of both the taxonomic and phylogenetic uniqueness of island biotic assembly.
Pilliod, D. S., M. I. Jeffries, R. S. Arkle, and D. H. Olson. 2024. Climate Futures for Lizards and Snakes in Western North America May Result in New Species Management Issues. Ecology and Evolution 14. https://doi.org/10.1002/ece3.70379
We assessed changes in fundamental climate‐niche space for lizard and snake species in western North America under modeled climate scenarios to inform natural resource managers of possible shifts in species distributions. We generated eight distribution models for each of 130 snake and lizard species in western North America under six time‐by‐climate scenarios. We combined the highest‐performing models per species into a single ensemble model for each scenario. Maps were generated from the ensemble models to depict climate‐niche space for each species and scenario. Patterns of species richness based on climate suitability and niche shifts were calculated from the projections at the scale of the entire study area and individual states and provinces, from Canada to Mexico. Squamate species' climate‐niche space for the recent‐time climate scenario and published known ranges were highly correlated (r = 0.81). Overall, reptile climate‐niche space was projected to move northward in the future. Sixty‐eight percent of species were projected to expand their current climate‐niche space rather than to shift, contract, or remain stable. Only 8.5% of species were projected to lose climate‐niche space in the future, and these species primarily occurred in Mexico and the southwestern U.S. We found few species were projected to lose all suitable climate‐niche space at the state or province level, although species were often predicted to occupy novel areas, such as at higher elevations. Most squamate species were projected to increase their climate‐niche space in future climate scenarios. As climate niches move northward, species are predicted to cross administrative borders, resulting in novel conservation issues for local landowners and natural resource agencies. However, information on species dispersal abilities, landscape connectivity, biophysical tolerances, and habitat suitability is needed to contextualize predictions relative to realized future niche expansions.
Frateles, L. E. F., G. R. G. Tavares, G. Nakamura, N. J. da Silva, L. C. Terribile, and J. A. F. Diniz‐Filho. 2024. The Interaction Between the Linnean and Darwinian Shortfalls Affects Our Understanding of the Evolutionary Dynamics Driving Diversity Patterns of New World Coralsnakes. Journal of Biogeography. https://doi.org/10.1111/jbi.15014
Aim In this study, we sought to understand how the Linnean shortfall (i.e., the lack of knowledge about species taxonomy) interacts with the Darwinian shortfall (i.e., the lack of knowledge about phylogenetic relationships among species), which potentially jeopardises geographical patterns in estimates of speciation rates.LocationNew World.TaxonCoralsnakes (Serpentes: Elapidae).MethodsWe created an index of taxonomic uncertainty (ITU) that measures the likelihood of current species being split after undergoing future taxonomic revisions. The ITU was used in simulations where species with higher taxonomic uncertainty had a higher likelihood of having their phylogenetic branches split, generating new hypothetical species along their geographic ranges. We estimated the speciation rates before and after the split of taxonomically uncertain species.ResultsWe found that a high number of coralsnake species display substantial taxonomic uncertainty, positively correlated with the latitude of the species' geographical range centroid. The estimated speciation rates based on currently available data have a weak relationship with latitude. However, after incorporating taxonomic uncertainty into the phylogeny, we detect a higher positive correlation between speciation rate and latitude.Main ConclusionsThe observed change in speciation rates following the incorporation of taxonomic uncertainty highlights how such uncertainty can undermine the empirical evaluation of geographical patterns in speciation rates, revealing an interaction between the latitudinal taxonomic gradient and the latitudinal diversity gradient. Given that taxonomic changes can alter the number of species recognised as valid over time, our study highlights the need to incorporate taxonomic uncertainty into macroecological and macroevolutionary studies, enhancing the robustness of patterns inferred from these data.
Nekrasova, O., M. Pupins, O. Marushchak, V. Tytar, A. Martinez-Silvestre, A. Škute, A. Čeirāns, et al. 2024. Present and future distribution of the European pond turtle versus seven exotic freshwater turtles, with a focus on Eastern Europe. Scientific Reports 14. https://doi.org/10.1038/s41598-024-71911-4
Freshwater turtles are often used as terrarium pets, especially juveniles of exotic species. At the adult stage they are often released by their owners into the wild despite their high invasion potential. In Europe these thermophilic potentially invasive alien species occupy the habitats of the native European pond turtle Emys orbicularis (Linnaeus, 1758), with new records from the wild being made specifically in Eastern Europe (Latvia and Ukraine) during recent decades. Assessing the potential of alien freshwater turtles to establish in new territories is of great concern for preventing invasion risks while preserving native biodiversity in the present context of climate change. We explored this issue by identifying the present and future (by 2050) suitable habitats of the European pond turtle and several potentially invasive alien species of freshwater turtle already settled in Europe, using a geographic information system (GIS) modelling approach based on datasets from CliMond for climate, Near-global environmental information (NGEI) for freshwater ecosystems (EarthEnv) and Maxent modelling using open-access databases, data from the literature and original field data. Modelling was performed for seven species of alien freshwater turtles occurring from the extreme northern to southern borders of the European range of E. orbicularis : the pond slider Trachemys scripta (Thunberg and Schoepff, 1792), the river cooter Pseudemys concinna (Le Conte, 1830), the Florida red-bellied cooter Pseudemys nelsoni (Carr, 1938), the false map turtle Graptemys pseudogeographica (Gray, 1831), the Chinese softshell turtle Pelodiscus sinensis (Wiegmann, 1835), the Caspian turtle Mauremys caspica (Gmelin, 1774) and the Balkan terrapin Mauremys rivulata (Valenciennes, 1833). In Ukraine, the most Eastern limit of E. orbicularis distribution, were previously reported northern American originated T. scripta , M. rivulata , M. caspica , whereas in Latvia, Emys’ most northern limit, were additionally reported P. concinna , P. nelsoni , G. pseudogeographica and Asia originated P. sinensis . The resulting Species Distribution Models (SDM) were of excellent performance (AUC > 0.8). Of these alien species, the most potentially successful in terms of range expansion throughout Europe were T. scripta (34.3% of potential range expansion), G. pseudogeographica (24.1%), and M. caspica (8.9%) and M. rivulata (4.3%) mainly in Eastern Europe, especially in the south of Ukraine (Odesa, Kherson, Zaporizhzhia regions, and Crimean Peninsula). Correlation between the built SDMs for the native E. orbicularis and the invasive alien T. scripta was reliably high, confirming the highly likely competition between these two species in places they cooccur. Moreover, a Multiple Regression Analysis revealed that by 2050, in most of Europe (from the western countries to Ukraine), the territory overlap between E. orbicularis and potentially invasive alien species of freshwater turtles will increase by 1.2 times, confirming higher competition in the future. Importantly, by 2050, Eastern Europe and Ukraine are predicted to be the areas with most suitable habitats for the European pond turtle yet with most limited overlap with the invasive alien species. We conclude that Eastern Europe and Ukraine are the most relevant priority conservation areas for the European pond turtle where it is now necessary to take protective measures to ensure safe habitat for this native species on the long-term.