Science Enabled by Specimen Data

Ramiro-Sánchez, B., A. Martin, and B. Leroy. 2023. The epitome of data paucity: Deep-sea habitats of the Southern Indian Ocean. Biological Conservation 283: 110096. https://doi.org/10.1016/j.biocon.2023.110096

Vulnerable marine ecosystems (VMEs) are protected from bottom-fishing impacts in international waters by UN resolutions through Regional Fishery Management Organizations. VMEs include deep-sea benthic taxa whose life-history traits make them vulnerable to disturbance. Conservation measures for VMEs require regulatory frameworks informed by biodiversity maps. Here we evaluate biogeographic patterns of VME biodiversity of the Southern Indian Ocean to understand conservation avenues for the Southern Indian Ocean Fisheries Agreement (SIOFA) management organization. We synthesised knowledge on the distribution of deep-sea benthic taxa and explored the quality and quantity of available data. Next, we explored how taxa are structured into bioregions using biogeographical networks. We found astounding Wallacean and Linnaean shortfalls within SIOFA's area, which is virtually devoid of distributional data. Across the entire area, results suggest that only 48 % of the expected deep-sea taxa has been sampled at most, and most sampled cells are inadequately sampled. Yet, our bioregionalization analysis identified multiple bioregions, some only observed within SIOFA's area. Whilst the Wallacean and Linnean shortfalls are so important for VMEs that they severely impede to make adequate maps for conservation planning, results suggest that SIOFA hosts a unique faunal composition that must be safeguarded. Predictive approaches to compensate for these shortfalls exist but will likely be insufficient and uncertain. Within SIOFA's area, there is no satisfying solution to cope with the data shortfalls. Yet, biodiversity maps are a global responsibility. This study makes a call to invest in biodiversity inventories in this region to promote informed conservation decisions.

da Conceição, E. de O., T. Mantovano, R. de Campos, E. V. do Couto, J. H. D. Ferreira, T. F. Rangel, K. Martens, et al. 2023. Predicted changes in the distribution of Ostracoda (Crustacea) from river basins in the southern cone of South America, under two climate change scenarios. Hydrobiologia. https://doi.org/10.1007/s10750-023-05144-3

While many studies predict changes in the distribution of individual species as a result of climate change, few studies have assessed such changes at the community level for aquatic invertebrates. We used ostracods (bivalved micro-crustaceans) to assess the effects of climate change on regional species richness, (re-) distribution and community composition across the river basins of the Southern Cone of South America. Using a range of niche-based models, we present projections of changes in diversity components in the light of two scenarios on increased carbon emissions: the moderate-optimistic (RCP 4.5) and the pessimistic (RCP 8.5) scenarios from four climate models on 2050 and 2080 scenarios. Future projections show increase in the number of (mapped) cells with a richness up to five species as compared to present-day situations. La Plata basin (LPLA) presents the highest species loss, mainly in the Paraguay and Paraná rivers, while the species gain occurred mainly in the La Puna Region, North Chile-Pacific Coast and southern LPLA basins. Global change might impact ostracod communities even on a medium term (2050). Despite losses of local species in all future scenarios, a small portion of the LPLA was identified as a potential future climatic refugia for ostracod communities, while the distribution area in Patagonia was predicted to be extremely small for some ostracods at the southernmost parts of South Argentina-South Atlantic Coast and South Chile-Pacific Coast basins in both futures. These results indicate that non-model organisms can also contribute greatly to formulate evidence-based management plans for aquatic ecosystems under climate change scenarios.

Moreno, I., J. M. W. Gippet, L. Fumagalli, and P. J. Stephenson. 2022. Factors affecting the availability of data on East African wildlife: the monitoring needs of conservationists are not being met. Biodiversity and Conservation. https://doi.org/10.1007/s10531-022-02497-4

Understanding the status and abundance of species is essential for effective conservation decision-making. However, the availability of species data varies across space, taxonomic groups and data types. A case study was therefore conducted in a high biodiversity region—East Africa—to evaluate data biases, the factors influencing data availability, and the consequences for conservation. In each of the eleven target countries, priority animal species were identified as threatened species that are protected by national governments, international conventions or conservation NGOs. We assessed data gaps and biases in the IUCN Red List of Threatened Species, the Global Biodiversity Information Facility and the Living Planet Index. A survey of practitioners and decision makers was conducted to confirm and assess consequences of these biases on biodiversity conservation efforts. Our results showed data on species occurrence and population trends were available for a significantly higher proportion of vertebrates than invertebrates. We observed a geographical bias, with higher tourism income countries having more priority species and more species with data than lower tourism income countries. Conservationists surveyed felt that, of the 40 types of data investigated, those data that are most important to conservation projects are the most difficult to access. The main challenges to data accessibility are excessive expense, technological challenges, and a lack of resources to process and analyse data. With this information, practitioners and decision makers can prioritise how and where to fill gaps to improve data availability and use, and ensure biodiversity monitoring is improved and conservation impacts enhanced.

Descôteaux, R., M. Huserbråten, L. Jørgensen, P. Renaud, R. Ingvaldsen, E. Ershova, and B. Bluhm. 2022. Origin of marine invertebrate larvae on an Arctic inflow shelf. Marine Ecology Progress Series. https://doi.org/10.3354/meps14170

Many benthic invertebrate taxa possess planktonic early life stages which drift with water currents and contribute to dispersal of the species, sometimes reaching areas beyond the current ranges of the adults. Until recently, it had been difficult to identify planktonic larvae to species level due to lack of distinguishing features, preventing detection of expatriate species. Here we used DNA metabarcoding of the COI gene to obtain species-level identification of early life stages of benthic invertebrates in zooplankton samples from the Barents Sea and around Svalbard, where, regionally, large volumes of warm Atlantic Water enter the Arctic from the south. We compared the larval community in the water column to the adult community on the seafloor to identify mismatches. In addition, we implemented particle tracking analysis to identify the possible areas of origin of larvae. Our results show that 30–45% of larval taxa—largely polychaetes and nudibranchs—were not local to the sampling area, though most were found nearby in the Barents Sea. In the particle tracking analysis, some larvae originating along the Norwegian coast were capable of reaching the northwest coast of Svalbard within 3 mo, but larvae found east of Svalbard had a more constrained possible area of origin which did not extend to the Norwegian coast. This study highlights largely regional-scale larval connectivity in the Barents Sea but demonstrates the potential for some long-lived larval taxa to travel to Svalbard and the Barents Sea from further south.

Knutson, V. L., and T. M. Gosliner. 2022. The first phylogenetic and species delimitation study of the nudibranch genus Gymnodoris reveals high species diversity (Gastropoda: Nudibranchia). Molecular Phylogenetics and Evolution 171: 107470. https://doi.org/10.1016/j.ympev.2022.107470

Nudibranchs are charismatic marine gastropods that lack a shell in the adult stage. While most nudibranchs feed on sessile animals such as sponges, bryozoans, and cnidarians, the nudibranch genus Gymnodoris Stimpson, 1855 evolved a more active and predatory lifestyle, including sea slug predation, cannibalism, and oddly enough, fish-fin parasitism. At the beginning of our work, no phylogenetic hypothesis existed for the genus, nor a clear picture of how Gymnodoris is related to other nudibranchs. Here we set out to reconstruct Gymnodoris phylogeny, investigate species diversity, and clarify the status of the genus name Analogium, which had been proposed for members of the genus with a linear gill filament arrangement. We present the first phylogenetic hypothesis for Gymnodoris, reconstructed by maximum likelihood and Bayesian inference using two mitochondrial and two nuclear molecular markers, with gill filament arrangement plotted on the phylogeny. The backbone of the phylogeny remains unresolved with these markers, however, we found that Gymnodoris comprises three main well-supported clades, which we refer to as the “subornata”, “citrina” and “varied” clade, the latter two clades being comprised of several well-supported subclades. The sister group to Gymnodoris is a clade including the genera Vayssierea and Lecithophorus. Based on ABGD and PTP species delimitation methods, we conservatively estimate 65–70 species comprise our dataset. We further estimate that approximately 81% of the species we sampled are undescribed, and note that a linear gill filament arrangement has evolved multiple times within the genus. Gymnodoris is only monophyletic when the species with a linear gill arrangement are included. Therefore, at this time, we agree with the synonymy of Analogium striata with Gymnodoris striata by Rudman and Darvell (1990) and that the genus name Analogium is warranted as a junior synonym of Gymnodoris. Given the extensive undescribed diversity, and lack of resolution at some of the nodes in the phylogeny, patterns of diversification in diet are impossible to discern at this time and will require a large effort to both describe Gymnodoris species diversity and the diets of these candidate species.

Boag, T. H., W. Gearty, and R. G. Stockey. 2021. Metabolic tradeoffs control biodiversity gradients through geological time. Current Biology 31: 2906-2913.e3. https://doi.org/10.1016/j.cub.2021.04.021

The latitudinal gradient of increasing marine biodiversity from the poles to the tropics is one of the most conspicuous biological patterns in modern oceans.1, 2, 3 Low-latitude regions of the global ocean are often hotspots of animal biodiversity, yet they are set to be most critically affected b…

Martin, D., M. T. Aguado, M.-A. Fernández Álamo, T. A. Britayev, M. Böggemann, M. Capa, S. Faulwetter, et al. 2021. On the Diversity of Phyllodocida (Annelida: Errantia), with a Focus on Glyceridae, Goniadidae, Nephtyidae, Polynoidae, Sphaerodoridae, Syllidae, and the Holoplanktonic Families. Diversity 13: 131. https://doi.org/10.3390/d13030131

Phyllodocida is a clade of errantiate annelids characterized by having ventral sensory palps, anterior enlarged cirri, axial muscular proboscis, compound chaetae (if present) with a single ligament, and of lacking dorsolateral folds. Members of most families date back to the Carboniferous, although …

Newbold, T., L. N. Hudson, S. Contu, S. L. L. Hill, J. Beck, Y. Liu, C. Meyer, et al. 2018. Widespread winners and narrow-ranged losers: Land use homogenizes biodiversity in local assemblages worldwide H. Morlon [ed.],. PLOS Biology 16: e2006841. https://doi.org/10.1371/journal.pbio.2006841

Human use of the land (for agriculture and settlements) has a substantial negative effect on biodiversity globally. However, not all species are adversely affected by land use, and indeed, some benefit from the creation of novel habitat. Geographically rare species may be more negatively affected by…

Newbold, T., P. Oppenheimer, A. Etard, and J. J. Williams. 2020. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nature Ecology & Evolution 4: 1630–1638. https://doi.org/10.1038/s41559-020-01303-0

Global biodiversity is undergoing rapid declines, driven in large part by changes to land use and climate. Global models help us to understand the consequences of environmental changes for biodiversity, but tend to neglect important geographical variation in the sensitivity of biodiversity to these …

Ewers‐Saucedo, C., and P. Pappalardo. 2019. Testing adaptive hypotheses on the evolution of larval life history in acorn and stalked barnacles. Ecology and Evolution 9: 11434–11447. https://doi.org/10.1002/ece3.5645

Despite strong selective pressure to optimize larval life history in marine environments, there is a wide diversity with regard to developmental mode, size, and time larvae spend in the plankton. In the present study, we assessed if adaptive hypotheses explain the distribution of the larval life his…