Science Enabled by Specimen Data

McManamay, R. A., Vernon, C. R., & Jager, H. I. (2021). Global Biodiversity Implications of Alternative Electrification Strategies Under the Shared Socioeconomic Pathways. Biological Conservation, 109234. doi:10.1016/j.biocon.2021.109234 https://doi.org/10.1016/j.biocon.2021.109234

Addressing climate mitigation while meeting global electrification goals will require major transitions from fossil-fuel dependence to large-scale renewable energy deployment. However, renewables require significant land assets per unit energy and could come at high cost to ecosystems, creating pote…

Hughes, A. C., Orr, M. C., Ma, K., Costello, M. J., Waller, J., Provoost, P., … Qiao, H. (2021). Sampling biases shape our view of the natural world. Ecography. doi:10.1111/ecog.05926 https://doi.org/10.1111/ecog.05926

Spatial patterns of biodiversity are inextricably linked to their collection methods, yet no synthesis of bias patterns or their consequences exists. As such, views of organismal distribution and the ecosystems they make up may be incorrect, undermining countless ecological and evolutionary studies.…

Oegelund Nielsen, R., da Silva, R., Juergens, J., Staerk, J., Lindholm Sørensen, L., Jackson, J., … Conde, D. A. (2020). Standardized data to support conservation prioritization for sharks and batoids (Elasmobranchii). Data in Brief, 33, 106337. doi:10.1016/j.dib.2020.106337 https://doi.org/10.1016/j.dib.2020.106337

#N/A

Chollett, I., & Robertson, D. R. (2020). Comparing biodiversity databases: Greater Caribbean reef fishes as a case study. Fish and Fisheries. doi:10.1111/faf.12497 https://doi.org/10.1111/faf.12497

There is a widespread need for reliable biodiversity databases for science and conservation. Among the many public databases available, we lack guidance as to how their data quality varies. Here, we compare species distribution data for a well known regional reef fish fauna extracted from five globa…

Hastings, R. A., Rutterford, L. A., Freer, J. J., Collins, R. A., Simpson, S. D., & Genner, M. J. (2020). Climate Change Drives Poleward Increases and Equatorward Declines in Marine Species. Current Biology. doi:10.1016/j.cub.2020.02.043 https://doi.org/10.1016/j.cub.2020.02.043

Marine environments have increased in temperature by an average of 1°C since pre-industrial (1850) times [1]. Given that species ranges are closely allied to physiological thermal tolerances in marine organisms [2], it may therefore be expected that ocean warming would lead to abundance increases at…

Smith, J. A., Benson, A. L., Chen, Y., Yamada, S. A., & Mims, M. C. (2020). The power, potential, and pitfalls of open access biodiversity data in range size assessments: Lessons from the fishes. Ecological Indicators, 110, 105896. doi:10.1016/j.ecolind.2019.105896 https://doi.org/10.1016/j.ecolind.2019.105896

Geographic rarity is a driver of a species’ intrinsic risk of extinction. It encompasses multiple key components including range size, which is one of the most commonly measured estimates of geographic rarity. Range size estimates are often used to prioritize conservation efforts when there are mult…