Science Enabled by Specimen Data

Whitman, M., Beaman, R. S., Repin, R., Kitayama, K., Aiba, S., & Russo, S. E. (2021). Edaphic specialization and vegetation zones define elevational range‐sizes for Mt Kinabalu regional flora. Ecography. doi:10.1111/ecog.05873 https://doi.org/10.1111/ecog.05873

Identifying physical and ecological boundaries that limit where species can occur is important for predicting how those species will respond to global change. The island of Borneo encompasses a wide range of habitats that support some of the highest richness on Earth, making it an ideal location for…

Wang, C.-J., & Wan, J.-Z. (2021). Functional trait perspective on suitable habitat distribution of invasive plant species at a global scale. Perspectives in Ecology and Conservation. doi:10.1016/j.pecon.2021.07.002 https://doi.org/10.1016/j.pecon.2021.07.002

Plant invasion has been proved to threaten biodiversity conservation and ecosystem maintenance at a global scale. It is a challenge to project suitable habitat distributions of invasive plant species (IPS) for invasion risk assessment at large spatial scales. Interaction outcomes between native and …

Chu, X., Gugger, P. F., Li, L., Zhao, J., & Li, Q. (2021). Responses of an endemic species ( Roscoea humeana ) in the Hengduan Mountains to climate change. Diversity and Distributions. doi:10.1111/ddi.13397 https://doi.org/10.1111/ddi.13397

Aim: Adaptation, migration and extinction of species is closely associated with climate changes and shape the distribution of biodiversity. The adaptive responses of species in the biodiversity hotspot, the Hengduan Mountains, to climate change remain poorly understood. Location: The Hengduan Mount…

Baumbach, L., Warren, D. L., Yousefpour, R., & Hanewinkel, M. (2021). Climate change may induce connectivity loss and mountaintop extinction in Central American forests. Communications Biology, 4(1). doi:10.1038/s42003-021-02359-9 https://doi.org/10.1038/s42003-021-02359-9

The tropical forests of Central America serve a pivotal role as biodiversity hotspots and provide ecosystem services securing human livelihood. However, climate change is expected to affect the species composition of forest ecosystems, lead to forest type transitions and trigger irrecoverable losses…

Erickson, K. D., & Smith, A. B. (2021). Accounting for imperfect detection in data from museums and herbaria when modeling species distributions: combining and contrasting data‐level versus model‐level bias correction. Ecography. doi:10.1111/ecog.05679 https://doi.org/10.1111/ecog.05679

The digitization of museum collections as well as an explosion in citizen science initiatives has resulted in a wealth of data that can be useful for understanding the global distribution of biodiversity, provided that the well-documented biases inherent in unstructured opportunistic data are accoun…

Catarino, S., Brilhante, M., Essoh, A. P., Charrua, A. B., Rangel, J., Roxo, G., … Romeiras, M. M. (2021). Exploring physicochemical and cytogenomic diversity of African cowpea and common bean. Scientific Reports, 11(1). doi:10.1038/s41598-021-91929-2 https://doi.org/10.1038/s41598-021-91929-2

In sub-Saharan Africa, grain legumes (pulses) are essential food sources and play an important role in sustainable agriculture. Among the major pulse crops, the native cowpea (Vigna unguiculata) and introduced common bean (Phaseolus vulgaris) stand out. This paper has two main goals. First, we provi…

Mingou, P. A. B., Gueye, M., Abotsi, K. E., Bayet, T., Cambier, C., & Rouhan, G. (2021). Three new records of fern species (Polypodiopsida) in Senegal, from Dindefelo Falls, Kedougou region. Check List, 17(3), 923–930. doi:10.15560/17.3.923 https://doi.org/10.15560/17.3.923

Blotiella currorii (Hook.) R.M.Tryon. (Dennstaedtiaceae), Dicranopteris linearis (Burm.F.) Underw. (Gleicheniaceae), and Aleuritopteris farinosa (Forssk.) Fée (Pteridaceae) are reported for the first time in the flora of Senegal. They represent not only three more species but also two new fam…

Diao, Y., Wang, J., Yang, F., Wu, W., Zhou, J., & Wu, R. (2021). Identifying optimized on-the-ground priority areas for species conservation in a global biodiversity hotspot. Journal of Environmental Management, 290, 112630. doi:10.1016/j.jenvman.2021.112630 https://doi.org/10.1016/j.jenvman.2021.112630

Threatened species are inadequately represented within protected areas (PAs) across the globe. Species conservation planning may be improved by using public species-occurrence databases, but empirical evidence is limited of how that may be accomplished at local scales. We used the Three Parallel Riv…

Allstädt, F. J., Koutsodendris, A., Appel, E., Rösler, W., Reichgelt, T., Kaboth-Bahr, S., … Pross, J. (2021). Late Pliocene to early Pleistocene climate dynamics in western North America based on a new pollen record from paleo-Lake Idaho. Palaeobiodiversity and Palaeoenvironments. doi:10.1007/s12549-020-00460-1 https://doi.org/10.1007/s12549-020-00460-1

Marked by the expansion of ice sheets in the high latitudes, the intensification of Northern Hemisphere glaciation across the Plio/Pleistocene transition at ~ 2.7 Ma represents a critical interval of late Neogene climate evolution. To date, the characteristics of climate change in North America duri…

Ortiz, A. M. D., & Torres, J. N. V. (2020). Assessing the Impacts of Agriculture and Its Trade on Philippine Biodiversity. Land, 9(11), 403. doi:10.3390/land9110403 https://doi.org/10.3390/land9110403

Many Philippine species are at risk of extinction because of habitat loss and degradation driven by agricultural land use and land-use change. The Philippines is one of the world’s primary banana and pineapple producers. The input-intensive style of plantation agriculture for these typically exporte…