Science Enabled by Specimen Data

Pelletier, D., and J. R. K. Forrest. 2022. Pollen specialisation is associated with later phenology in Osmia bees (Hymenoptera: Megachilidae). Ecological Entomology.

Species exhibit a range of specialisation in diet and other niche axes, with specialists typically thought to be more efficient in resource use but more vulnerable to extinction than generalists. Among herbivorous insects, dietary specialists seem more likely to lack acceptable host plants during the insect's feeding stage, owing to fluctuations in host‐plant abundance or phenology. Like other herbivores, bee species vary in host breadth from pollen specialisation (oligolecty) to generalisation (polylecty).Several studies have shown greater interannual variation in flowering phenology for earlier‐flowering plants than later‐flowering plants, suggesting that early‐season bees may experience substantial year‐to‐year variation in the floral taxa available to them.It was therefore reasoned that, among bees, early phenology could be a more viable strategy for generalists, which can use resources from multiple floral taxa, than for specialists. Consequently, it was expected that the median dates of collection of adult specimens to be earlier for generalist species than for specialists. To test this, phenology data and pollen diet information on 67 North American species of the bee genus Osmia was obtained.Controlling for latitude and phylogeny, it was found that dietary generalisation is associated with significantly earlier phenology, with generalists active, on average, 11–14 days earlier than specialists.This result is consistent with the generalist strategy being more viable than the specialist strategy for species active in early spring, suggesting that dietary specialisation may constrain the evolution of bee phenology—or vice versa.

Christman, M. E., L. R. Spears, J. B. U. Koch, T.-T. T. Lindsay, J. P. Strange, C. L. Barnes, and R. A. Ramirez. 2022. Captive Rearing Success and Critical Thermal Maxima of Bombus griseocollis (Hymenoptera: Apidae): A Candidate for Commercialization? J. Brunet [ed.],. Journal of Insect Science 22.

Abstract Commercialized bumble bees (Bombus) are primary pollinators of several crops within open field and greenhouse settings. However, the common eastern bumble bee (Bombus impatiens Cresson, 1863) is the only species widely available for purchase in North America. As an eastern species, concerns have been expressed over their transportation outside of their native range. Therefore, there is a need to identify regionally appropriate candidates for commercial crop pollination services, especially in the western U.S.A. In this study, we evaluated the commercialization potential of brown-belted bumble bees (Bombus griseocollis De Geer, 1773), a broadly distributed species throughout the U.S.A., by assessing nest initiation and establishment rates of colonies produced from wild-caught gynes, creating a timeline of colony development, and identifying lab-reared workers’ critical thermal maxima (CTMax) and lethal temperature (ecological death). From 2019 to 2021, 70.6% of the wild-caught B. griseocollis gynes produced brood in a laboratory setting. Of these successfully initiated nests, 74.8% successfully established a nest (produced a worker), providing guidance for future rearing efforts. Additionally, lab-reared workers produced from wild-caught B. griseocollis gynes had an average CTMax of 43.5°C and an average lethal temperature of 46.4°C, suggesting B. griseocollis can withstand temperatures well above those commonly found in open field and greenhouse settings. Overall, B. griseocollis should continue to be evaluated for commercial purposes throughout the U.S.A.

Xie, Y., H. T. Thammavong, and D. S. Park. 2022. The ecological implications of intra‐ and inter‐species variation in phenological sensitivity. New Phytologist.

●Plant‐pollinator mutualisms rely upon the synchrony of interacting taxa. Climate change can disrupt this synchrony as phenological responses to climate vary within and across species. However, intra‐ and interspecific variation in phenological responses is seldom considered simultaneously, limiting our understanding of climate change impacts on interactions among taxa across their ranges.●We investigated how variation in phenological sensitivity to climate can alter ecological interactions simultaneously within and among species using natural history collections and citizen science data. We focus on a unique system, comprising a wide‐ranged spring ephemeral with varying color morphs (Claytonia virginica) and its specialist bee pollinator (Andrena erigeniae).●We found strongly opposing trends in the phenological sensitivities of plants versus their pollinators. Flowering phenology was more sensitive to temperature in warmer regions, whereas bee phenology was more responsive in colder regions. Phenological sensitivity varied across flower color morphs. Temporal synchrony between flowering and pollinator activity were predicted to change heterogeneously across the species’ ranges in the future.●Our work demonstrates the complexity and fragility of ecological interactions in time and the necessity of incorporating variation in phenological responses across multiple axes to understand how such interactions will change in the future.

Boyd, R. J., M. A. Aizen, R. M. Barahona‐Segovia, L. Flores‐Prado, F. E. Fontúrbel, T. M. Francoy, M. Lopez‐Aliste, et al. 2022. Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization efforts Y. Fourcade [ed.],. Diversity and Distributions 28: 1404–1415.

Aim Aggregated species occurrence data are increasingly accessible through public databases for the analysis of temporal trends in the geographic distributions of species. However, biases in these data present challenges for statistical inference. We assessed potential biases in data available through GBIF on the occurrences of four flower-visiting taxa: bees (Anthophila), hoverflies (Syrphidae), leaf-nosed bats (Phyllostomidae) and hummingbirds (Trochilidae). We also assessed whether and to what extent data mobilization efforts improved our ability to estimate trends in species' distributions. Location The Neotropics. Methods We used five data-driven heuristics to screen the data for potential geographic, temporal and taxonomic biases. We began with a continental-scale assessment of the data for all four taxa. We then identified two recent data mobilization efforts (2021) that drastically increased the quantity of records of bees collected in Chile available through GBIF. We compared the dataset before and after the addition of these new records in terms of their biases and estimated trends in species' distributions. Results We found evidence of potential sampling biases for all taxa. The addition of newly-mobilized records of bees in Chile decreased some biases but introduced others. Despite increasing the quantity of data for bees in Chile sixfold, estimates of trends in species' distributions derived using the postmobilization dataset were broadly similar to what would have been estimated before their introduction, albeit more precise. Main conclusions Our results highlight the challenges associated with drawing robust inferences about trends in species' distributions using publicly available data. Mobilizing historic records will not always enable trend estimation because more data do not necessarily equal less bias. Analysts should carefully assess their data before conducting analyses: this might enable the estimation of more robust trends and help to identify strategies for effective data mobilization. Our study also reinforces the need for targeted monitoring of pollinators worldwide.

Belitz, M. W., V. Barve, J. R. Doby, M. M. Hantak, E. A. Larsen, D. Li, J. A. Oswald, et al. 2021. Climate drivers of adult insect activity are conditioned by life history traits C. Scherber [ed.],. Ecology Letters 24: 2687–2699.

Insect phenological lability is key for determining which species will adapt under environmental change. However, little is known about when adult insect activity terminates and overall activity duration. We used community‐science and museum specimen data to investigate the effects of climate and urbanisation on timing of adult insect activity for 101 species varying in life history traits. We found detritivores and species with aquatic larval stages extend activity periods most rapidly in response to increasing regional temperature. Conversely, species with subterranean larval stages have relatively constant durations regardless of regional temperature. Species extended their period of adult activity similarly in warmer conditions regardless of voltinism classification. Longer adult durations may represent a general response to warming, but voltinism data in subtropical environments are likely underreported. This effort provides a framework to address the drivers of adult insect phenology at continental scales and a basis for predicting species response to environmental change.

Li, D., Z. Li, Z. Liu, Y. Yang, A. G. Khoso, L. Wang, and D. Liu. 2022. Climate change simulations revealed potentially drastic shifts in insect community structure and crop yields in China’s farmland. Journal of Pest Science.

Climate change will cause drastic fluctuations in agricultural ecosystems, which in turn may affect global food security. We used ecological niche modeling to predict the potential distribution for four cereal aphids (i.e., Sitobion avenae, Rhopalosiphum padi, Schizaphis graminum, and Diurphis noxia…

Kolanowska, M. 2021. The future of a montane orchid species and the impact of climate change on the distribution of its pollinators and magnet species. Global Ecology and Conservation 32: e01939.

The aim of this study was to evaluate the impact of global warming on suitable niches of montane orchid, Traunsteinera globosa, using ecological niche modelling approach. Additionally, the effect of various climate change scenarios on future changes in the distribution and overlap of the orchid magn…

Ostrom, R. B. J., and K. L. Grayson. 2021. First record of Hylaeus pictipes Nylander, 1852 (Hymenoptera, Colletidae) in Virginia, United States of America. Check List 17: 1375–1381.

Insect surveys of developed areas can provide important new species records as these areas are often under-surveyed and assumed to have low biodiversity. These surveys are of increasing importance as fragmentation and habitat conversion further alters the biosphere. We report a new state species rec…

Lewthwaite, J. M. M., and A. Ø. Mooers. 2021. Geographical homogenization but little net change in the local richness of Canadian butterflies A. Baselga [ed.],. Global Ecology and Biogeography 31: 266–279.

Aim: Recent studies have found that local-scale plots measured through time exhibit marked variation in the change in species richness. However, the overall effect often reveals no net change. Most studies to date have been agnostic about the identities of the species lost/gained and about the proce…

Sirois‐Delisle, C., and J. T. Kerr. 2021. Climate change aggravates non‐target effects of pesticides on dragonflies at macroecological scales. Ecological Applications 32.

Critical gaps in understanding how species respond to environmental change limit our capacity to address conservation risks in a timely way. Here, we examine the direct and interactive effects of key global change drivers, including climate change, land use change, and pesticide use, on persistence …