Science Enabled by Specimen Data

Xue, T., Gadagkar, S. R., Albright, T. P., Yang, X., Li, J., Xia, C., … Yu, S. (2021). Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation, 32, e01885. doi:10.1016/j.gecco.2021.e01885 https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Ma, C.-S., Zhang, W., Peng, Y., Zhao, F., Chang, X.-Q., Xing, K., … Rudolf, V. H. W. (2021). Climate warming promotes pesticide resistance through expanding overwintering range of a global pest. Nature Communications, 12(1). doi:10.1038/s41467-021-25505-7 https://doi.org/10.1038/s41467-021-25505-7

Climate change has the potential to change the distribution of pests globally and their resistance to pesticides, thereby threatening global food security in the 21st century. However, predicting where these changes occur and how they will influence current pest control efforts is a challenge. Using…

El Zein, H., & Bou Dagher-Kharrat, M. (2021). New records of vascular plants for the flora of Lebanon: a rare species rediscovered after seventy years, Daphne pontica L. (Thymelaeaceae), and three new occurrences, Atropa bella-donna L. (Solanaceae), Circaea lutetiana L. (Onagraceae), and Euonymus latifolius (L.) Mill. (Celastraceae). Check List, 17(2), 655–667. doi:10.15560/17.2.655 https://doi.org/10.15560/17.2.655

During a series of surveys in two valleys of Mount Lebanon between 2014 and 2020, four new occurrences of vascular plants were detected. Atropa bella-donna L. (Solanaceae, Spermatophyte), Circaea lutetiana L. (Onagraceae, Spermatophyte), and Euonymus latifolius (L.) Mill. (Celastraceae, Spermatophyt…

Pérez‐Navarro, M. Á., Serra‐Diaz, J. M., Svenning, J., Esteve‐Selma, M. Á., Hernández‐Bastida, J., & Lloret, F. (2021). Extreme drought reduces climatic disequilibrium in dryland plant communities. Oikos. doi:10.1111/oik.07882 https://doi.org/10.1111/oik.07882

High rates of climate change are currently exceeding many plant species' capacity to keep up with climate, leading to mismatches between climatic conditions and climatic preferences of the species present in a community. This disequilibrium between climate and community composition could diminish, h…

Allstädt, F. J., Koutsodendris, A., Appel, E., Rösler, W., Reichgelt, T., Kaboth-Bahr, S., … Pross, J. (2021). Late Pliocene to early Pleistocene climate dynamics in western North America based on a new pollen record from paleo-Lake Idaho. Palaeobiodiversity and Palaeoenvironments. doi:10.1007/s12549-020-00460-1 https://doi.org/10.1007/s12549-020-00460-1

Marked by the expansion of ice sheets in the high latitudes, the intensification of Northern Hemisphere glaciation across the Plio/Pleistocene transition at ~ 2.7 Ma represents a critical interval of late Neogene climate evolution. To date, the characteristics of climate change in North America duri…

Lv, Z., Liu, F., Zhang, Y., Tu, Y., Chen, P., & Peng, L. (2020). Ecologically adaptable Populus simonii is specific for recalcitrance‐reduced lignocellulose and largely‐enhanced enzymatic saccharification among woody plants. GCB Bioenergy. doi:10.1111/gcbb.12764 https://doi.org/10.1111/gcbb.12764

Woody plants provide enormous biomass resource convertible for biofuels and bioproducts, but they are of typical lignified secondary cell walls with strong recalcitrance against biomass degradation. It thus becomes critical to find out the desirable woody plant enabled for efficient biomass enzymati…

Brightly, W. H., Hartley, S. E., Osborne, C. P., Simpson, K. J., & Strömberg, C. A. E. (2020). High silicon concentrations in grasses are linked to environmental conditions and not associated with C 4 photosynthesis. Global Change Biology. doi:10.1111/gcb.15343 https://doi.org/10.1111/gcb.15343

The uptake and deposition of silicon (Si) as silica phytoliths is common among land plants and is associated with a variety of functions. Among these, herbivore defense has received significant attention, particularly with regards to grasses and grasslands. Grasses are well known for their high sili…