Science Enabled by Specimen Data

Marcussen, T., H. E. Ballard, J. Danihelka, A. R. Flores, M. V. Nicola, and J. M. Watson. 2022. A Revised Phylogenetic Classification for Viola (Violaceae). Plants 11: 2224. https://doi.org/10.3390/plants11172224

The genus Viola (Violaceae) is among the 40–50 largest genera among angiosperms, yet its taxonomy has not been revised for nearly a century. In the most recent revision, by Wilhelm Becker in 1925, the then-known 400 species were distributed among 14 sections and numerous unranked groups. Here, we provide an updated, comprehensive classification of the genus, based on data from phylogeny, morphology, chromosome counts, and ploidy, and based on modern principles of monophyly. The revision is presented as an annotated global checklist of accepted species of Viola, an updated multigene phylogenetic network and an ITS phylogeny with denser taxon sampling, a brief summary of the taxonomic changes from Becker’s classification and their justification, a morphological binary key to the accepted subgenera, sections and subsections, and an account of each infrageneric subdivision with justifications for delimitation and rank including a description, a list of apomorphies, molecular phylogenies where possible or relevant, a distribution map, and a list of included species. We distribute the 664 species accepted by us into 2 subgenera, 31 sections, and 20 subsections. We erect one new subgenus of Viola (subg. Neoandinium, a replacement name for the illegitimate subg. Andinium), six new sections (sect. Abyssinium, sect. Himalayum, sect. Melvio, sect. Nematocaulon, sect. Spathulidium, sect. Xanthidium), and seven new subsections (subsect. Australasiaticae, subsect. Bulbosae, subsect. Clausenianae, subsect. Cleistogamae, subsect. Dispares, subsect. Formosanae, subsect. Pseudorupestres). Evolution within the genus is discussed in light of biogeography, the fossil record, morphology, and particular traits. Viola is among very few temperate and widespread genera that originated in South America. The biggest identified knowledge gaps for Viola concern the South American taxa, for which basic knowledge from phylogeny, chromosome counts, and fossil data is virtually absent. Viola has also never been subject to comprehensive anatomical study. Studies into seed anatomy and morphology are required to understand the fossil record of the genus.

Coca‐de‐la‐Iglesia, M., N. G. Medina, J. Wen, and V. Valcárcel. 2022. Evaluation of the tropical‐temperate transitions: An example of climatic characterization in the Asian Palmate group of Araliaceae. American Journal of Botany. https://doi.org/10.1002/ajb2.16059

(no abstract available)

Contreras-Medina, R., M. Santiago-Alvarado, D. Espinosa, G. Rivas, and I. Luna-Vega. 2022. Distributional patterns and conservation of the genus Habromys (Rodentia: Cricetidae) in Mesoamerica. Studies on Neotropical Fauna and Environment: 1–17. https://doi.org/10.1080/01650521.2022.2085071

We analyzed the geographical distribution of Habromys species based on distributional data from museum specimens, web databases, and literature. We recorded species-presence data of each species in 0.5° × 0.5° grid cells and biogeographic provinces in Mexico and Central America. We analyzed the association between vegetation types and land use. We carried out species distribution models of most species of Habromys and those tree species frequently harboring these mice, finding a high distributional congruence among mice and trees. Species of Habromys occur throughout the montane systems of Mexico and northern Central America, so they can be considered characteristic elements of the Neotropical montane cloud forests. All species of the genus occur in Mexico, whereas Guatemala and El Salvador have only one species. Although all species of Habromys are highly restricted and considered rare species, only one (H. simulatus) is currently protected by Mexican laws. We assigned two species to a high and four to the critical conservation risk. Habromys species contribute to the recognition of Mesoamerica as a biodiversity hotspot.

Amaral, D. T., I. A. S. Bonatelli, M. Romeiro-Brito, E. M. Moraes, and F. F. Franco. 2022. Spatial patterns of evolutionary diversity in Cactaceae show low ecological representation within protected areas. Biological Conservation 273: 109677. https://doi.org/10.1016/j.biocon.2022.109677

Mapping biodiversity patterns across taxa and environments is crucial to address the evolutionary and ecological dimensions of species distribution, suggesting areas of particular importance for conservation purposes. Within Cactaceae, spatial diversity patterns are poorly explored, as are the abiotic factors that may predict these patterns. We gathered geographic and genetic data from 921 cactus species by exploring both the occurrence and genetic databases, which are tightly associated with drylands, to evaluate diversity patterns, such as phylogenetic diversity and endemism, paleo-, neo-, and superendemism, and the environmental predictor variables of such patterns in a global analysis. Hotspot areas of cacti diversity are scattered along the Neotropical and Nearctic regions, mainly in the desertic portion of Mesoamerica, Caribbean Island, and the dry diagonal of South America. The geomorphological features of these regions may create a complexity of areas that work as locally buffered zones over time, which triggers local events of diversification and speciation. Desert and dryland/dry forest areas comprise paleo- and superendemism and may act as both museums and cradles of species, displaying great importance for conservation. Past climates, topography, soil features, and solar irradiance seem to be the main predictors of distinct endemism types. The hotspot areas that encompass a major part of the endemism cells are outside or poorly covered by formal protection units. The current legally protected areas are not able to conserve the evolutionary diversity of cacti. Given the rapid anthropogenic disturbance, efforts must be reinforced to monitor biodiversity and the environment and to define/plan current and new protected areas.

Sotuyo, S., E. Pedraza-Ortega, E. Martínez-Salas, J. Linares, and L. Cabrera. 2022. Insights into phylogenetic divergence of Dalbergia (Leguminosae: Dalbergiae) from Mexico and Central America. Frontiers in Ecology and Evolution 10. https://doi.org/10.3389/fevo.2022.910250

The pantropical genus Dalbergia includes more than 250 species. Phylogenetic studies of the group are scarce and have only included two or three species distributed in Mexico. We obtained herbarium samples of Mexican, Central American, and South American species (sourced from MEXU). In addition, sequences of GenBank accessions were used to complement the study. Using internal transcribed spacer (ITS), the matK and rbcL sequences from 384 accessions comprising species from America, Asia, and Africa were sampled to evaluate phylogenetic relationships of Mexican species and infrageneric classifications based on morphological data. Phylogenetic analyses suggest that the genus Dalbergia is monophyletic and originated in South America. The species distributed in Mexico are not a monophyletic clade but are divided into four clades with affinities to South American and Asian species clades. There is no correlation between geography and large-scale phylogeny. The estimated ages of the Mexican and Central American clades ranged from 11.32 Ma (Dalbergia granadillo clade) to 1.88 Ma (Dalbergia ecastaphyllum clade). Multiple long-distance dispersal events should be used to explain the current genus distribution.

Donoghue, M. J., D. A. R. Eaton, C. A. Maya-Lastra, M. J. Landis, P. W. Sweeney, M. E. Olson, N. I. Cacho, et al. 2022. Replicated radiation of a plant clade along a cloud forest archipelago. Nature Ecology & Evolution 6: 1318–1329. https://doi.org/10.1038/s41559-022-01823-x

Replicated radiations, in which sets of similar forms evolve repeatedly within different regions, can provide powerful insights into parallel evolution and the assembly of functional diversity within communities. Several cases have been described in animals, but in plants we lack well-documented cases of replicated radiation that combine comprehensive phylogenetic and biogeographic analyses, the delimitation of geographic areas within which a set of ‘ecomorphs’ evolved independently and the identification of potential underlying mechanisms. Here we document the repeated evolution of a set of leaf ecomorphs in a group of neotropical plants. The Oreinotinus lineage within the angiosperm clade Viburnum spread from Mexico to Argentina through disjunct cloud forest environments. In 9 of 11 areas of endemism, species with similar sets of leaf forms evolved in parallel. We reject gene-flow-mediated evolution of similar leaves and show, instead, that species with disparate leaf forms differ in their climatic niches, supporting ecological adaptation as the driver of parallelism. Our identification of a case of replicated radiation in plants sets the stage for comparative analyses of such phenomena across the tree of life. Several cases of replicated radiations (in which sets of similar forms evolve repeatedly within different regions) have been described in animals. Here the authors provide a well-documented example in plants, specifically the Oreinotinus lineage within the angiosperm clade Viburnum in its spread from Mexico to Argentina through disjunct cloud forest environments.

Kullberg, A. T., and K. J. Feeley. 2022. Limited acclimation of leaf traits and leaf temperatures in a subtropical urban heat island S. Pfautsch [ed.],. Tree Physiology. https://doi.org/10.1093/treephys/tpac066

The consequences of rising temperatures for trees will vary between species based on their abilities to acclimate their leaf thermoregulatory traits and photosynthetic thermal tolerances. We tested the hypotheses that adult trees in warmer growing conditions (1) acclimate their thermoregulatory traits to regulate leaf temperatures and (2) acclimate their thermal tolerances such that tolerances are positively correlated with leaf temperature, and that (3) species with broader thermal niche breadths have greater acclimatory abilities. To test these hypotheses, we measured leaf traits and thermal tolerances of seven focal tree species across steep thermal gradients in Miami’s urban heat island. We found that some functional traits varied significantly across air temperatures within species. For example, leaf thickness increased with maximum air temperature in three species, and leaf mass per area and leaf reflectance both increased with air temperature in one species. Only one species was marginally more homeothermic than expected by chance due to acclimation of its thermoregulatory traits, but this acclimation was insufficient to offset elevated air temperatures. Thermal tolerances acclimated to higher maximum air temperatures in two species. As a result of limited acclimation, leaf Thermal Safety Margins (TSMs) were narrower for trees in hotter areas. We found some support for our hypothesis that species with broader thermal niches are better at acclimating in order to maintain more-stable TSMs across the temperature gradients. These findings suggest that trees have limited abilities to acclimate to high temperatures and that thermal niche specialists may be at a heightened risk of thermal stress as global temperatures continue to rise.

Hidalgo-Triana, N., F. Casimiro-Soriguer Solanas, A. Solakis Tena, A. V. Pérez-Latorre, and J. García-Sánchez. 2022. Melinis repens (Willd.) Zizka subsp. repens (Poaceae) in Europe: distribution, ecology and potential invasion. Botany Letters 169: 390–399. https://doi.org/10.1080/23818107.2022.2080111

Melinis repens subsp. repens is an annual herb native to Africa and southwestern Asia. In 2008, this species was detected growing in road verges and showing a reduced occupancy area of 6 km2 in a natural area of the southern Iberian Peninsula in the province of Malaga (Andalusia, Spain). The rest of the existing European records of this species comes from the Czech Republic, the Italian Peninsula, and Great Britain and can be considered casual. Furthermore, this species has become naturalised in Sardinia. The aim of this work is to study the invasion status, habitats, potential impacts, invasive behaviour, and pathways of introduction of Melinis repens subsp. repens in the southern Iberian Peninsula (Spain) to contribute to the control of this species. This species was most probably introduced into Europe for ornamental, fodder, or slope stabilization purposes. Our field work revealed this species has become naturalised in several habitats of Malaga and Granada provinces (Andalusia) occupying an area of 263 km2 in 2021. It behaves as a pioneer species that colonizes disturbed road margins and occurs in the same habitat as Cenchrus setaceus. Melinis repens subsp. repens can become dominant in natural EUNIS habitats and can also occupy cultivated areas. Because of the high occupancy area detected, and because the species has been assigned to the European Union List of Invasive Alien Plants based on the EPPO prioritization process, this plant should be considered the object of a control programme and its use should be legally prohibited in Spain, and more largely in European Mediterranean areas.

Cano, Á., F. W. Stauffer, T. Andermann, I. M. Liberal, A. Zizka, C. D. Bacon, H. Lorenzi, et al. 2022. Recent and local diversification of Central American understorey palms. Global Ecology and Biogeography 31: 1513–1525. https://doi.org/10.1111/geb.13521

Aim Central America is largely covered by hyperdiverse, yet poorly understood, rain forests. Understorey palms are diverse components of these forests, but little is known about their historical assembly. It is not clear when palms in Central America reached present diversity levels and whether most species arrived from neighbouring regions or evolved locally. We addressed these questions using the most species-rich American palm clades indicative of rain forests. We reconstructed and compared their phylogenomic and biogeographical history with the diversification of 54 other plant lineages, to gain a better understanding of the processes that shaped the assembly of Central American rain forests. Location Central America. Time period Cretaceous to present. Major taxa studied Arecaceae: Arecoideae: Bactridinae, Chamaedoreeae, Geonomateae. Methods We sampled 218 species through fieldwork and living collections. We sequenced their genomic DNA using target sequence-capture procedures. Using 12 calibration points, we reconstructed dated phylogenies under three approaches (multispecies coalescent, maximum likelihood and Bayesian inference), conducted biogeographical analyses (dispersal–extinction–cladogenesis) and estimated phylogenetic diversity metrics. Results Dated phylogenies revealed intense diversification in Central America from 12 Ma. Local diversification events were four times more frequent than dispersal events, and we found strong phylogenetic clustering in relationship to Central America. Main conclusions Our results suggest that most understorey palm species that characterize the Central American rain forests today evolved locally after repeated dispersal events, mostly from South America. Understorey palms in Central American rain forests diversified primarily after closure of the Central American Seaway at c. 13 Ma, suggesting that the Great American Biotic Interchange was a major trigger for plant diversification in Central American rain forests. This recent diversification contrasts with the much earlier existence of rain forest palms in neighbouring South America since c. 58 Ma. We found similar timings of diversification in 54 other seed plant lineages, suggesting an unexpectedly recent assembly of the hyperdiverse Central American flora.

Williams, C. J. R., D. J. Lunt, U. Salzmann, T. Reichgelt, G. N. Inglis, D. R. Greenwood, W. Chan, et al. 2022. African Hydroclimate During the Early Eocene From the DeepMIP Simulations. Paleoceanography and Paleoclimatology 37. https://doi.org/10.1029/2022pa004419

The early Eocene (∼56‐48 million years ago) is characterised by high CO2 estimates (1200‐2500 ppmv) and elevated global temperatures (∼10 to 16°C higher than modern). However, the response of the hydrological cycle during the early Eocene is poorly constrained, especially in regions with sparse data coverage (e.g. Africa). Here we present a study of African hydroclimate during the early Eocene, as simulated by an ensemble of state‐of‐the‐art climate models in the Deep‐time Model Intercomparison Project (DeepMIP). A comparison between the DeepMIP pre‐industrial simulations and modern observations suggests that model biases are model‐ and geographically dependent, however these biases are reduced in the model ensemble mean. A comparison between the Eocene simulations and the pre‐industrial suggests that there is no obvious wetting or drying trend as the CO2 increases. The results suggest that changes to the land sea mask (relative to modern) in the models may be responsible for the simulated increases in precipitation to the north of Eocene Africa. There is an increase in precipitation over equatorial and West Africa and associated drying over northern Africa as CO2 rises. There are also important dynamical changes, with evidence that anticyclonic low‐level circulation is replaced by increased south‐westerly flow at high CO2 levels. Lastly, a model‐data comparison using newly‐compiled quantitative climate estimates from palaeobotanical proxy data suggests a marginally better fit with the reconstructions at lower levels of CO2.