Science Enabled by Specimen Data

Ringelberg, J. J., N. E. Zimmermann, A. Weeks, M. Lavin, and C. E. Hughes. 2020. Biomes as evolutionary arenas: Convergence and conservatism in the trans‐continental succulent biome A. Moles [ed.],. Global Ecology and Biogeography 29: 1100–1113. https://doi.org/10.1111/geb.13089

Aim: Historically, biomes have been defined based on their structurally and functionally similar vegetation, but there is debate about whether these similarities are superficial, and about how biomes are defined and mapped. We propose that combined assessment of evolutionary convergence of plant fun…

Thang, T. H., A. M. Thu, and J. Chen. 2020. Tree species of tropical and temperate lineages in a tropical Asian montane forest show different range dynamics in response to climate change. Global Ecology and Conservation 22: e00973. https://doi.org/10.1016/j.gecco.2020.e00973

Shifts in species distributions have been documented in response to recent climatic change, with most species moving poleward and to higher altitude. However, different taxa may respond to climatic change differently. The Climatic Variability Hypothesis (CVH) suggests that taxa originating from envi…

Eckert, S., A. Hamad, C. J. Kilawe, T. E. W. Linders, W. Ng, P. R. Mbaabu, H. Shiferaw, et al. 2020. Niche change analysis as a tool to inform management of two invasive species in Eastern Africa. Ecosphere 11. https://doi.org/10.1002/ecs2.2987

Significant progress has been made in providing guidelines and recommendations for assessing the ecological niche, stage of invasion, and probability of invasive alien plant species (IAPS) potential distribution in space and time. We followed these recommendations by developing and comparing ordinat…

Carrasco, J., V. Price, V. Tulloch, and M. Mills. 2020. Selecting priority areas for the conservation of endemic trees species and their ecosystems in Madagascar considering both conservation value and vulnerability to human pressure. Biodiversity and Conservation 29: 1841–1854. https://doi.org/10.1007/s10531-020-01947-1

Madagascar is one of the most biodiverse countries in Africa, due to its level of endemism and species diversity. However, the pressure of human activities threatens the last patches of natural vegetation in the country and conservation decisions are undertaken with limited data availability. In thi…

Nevado, B., E. L. Y. Wong, O. G. Osborne, and D. A. Filatov. 2019. Adaptive Evolution Is Common in Rapid Evolutionary Radiations. Current Biology 29: 3081-3086.e5. https://doi.org/10.1016/j.cub.2019.07.059

One of the most long-standing and important mysteries in evolutionary biology is why biological diversity is so unevenly distributed across space and taxonomic lineages. Nowhere is this disparity more evident than in the multitude of rapid evolutionary radiations found on oceanic islands and mountai…

Folk, R. A., R. L. Stubbs, M. E. Mort, N. Cellinese, J. M. Allen, P. S. Soltis, D. E. Soltis, and R. P. Guralnick. 2019. Rates of niche and phenotype evolution lag behind diversification in a temperate radiation. Proceedings of the National Academy of Sciences 116: 10874–10882. https://doi.org/10.1073/pnas.1817999116

Environmental change can create opportunities for increased rates of lineage diversification, but continued species accumulation has been hypothesized to lead to slowdowns via competitive exclusion and niche partitioning. Such density-dependent models imply tight linkages between diversification and…

Margaroni, S., K. B. Petersen, R. Gleadow, and M. Burd. 2019. The role of spore size in the global pattern of co‐occurrence among Selaginella species. Journal of Biogeography 46: 807–815. https://doi.org/10.1111/jbi.13532

Aim: Separation of regeneration niches may promote coexistence among closely related plant species, but there is little evidence that regeneration traits affect species ranges at broad geographical scales. We address patterns of co‐occurrence within the genus Selaginella, an ancient lineage of free‐…

Karger, D. N., M. Kessler, O. Conrad, P. Weigelt, H. Kreft, C. König, and N. E. Zimmermann. 2019. Why tree lines are lower on islands—Climatic and biogeographic effects hold the answer J. Grytnes [ed.],. Global Ecology and Biogeography 28: 839–850. https://doi.org/10.1111/geb.12897

Aim: To determine the global position of tree line isotherms, compare it with observed local tree limits on islands and mainlands, and disentangle the potential drivers of a difference between tree line and local tree limit. Location: Global. Time period: 1979–2013. Major taxa studied: Trees. Method…

Chevalier, M. 2019. Enabling possibilities to quantify past climate from fossil assemblages at a global scale. Global and Planetary Change 175: 27–35. https://doi.org/10.1016/j.gloplacha.2019.01.016

The field of quantitative palaeoclimatology has made significant progress in the past decades. However, this progress has been spatially heterogeneous and strong discrepancies – both in terms of quality and density – exist between Europe and North America and the rest of the world. The need to balan…

Park, D. S., and O. H. Razafindratsima. 2018. Anthropogenic threats can have cascading homogenizing effects on the phylogenetic and functional diversity of tropical ecosystems. Ecography 42: 148–161. https://doi.org/10.1111/ecog.03825

Determining the mechanisms that underlie species distributions and assemblages is necessary to effectively preserve biodiversity. This cannot be accomplished by examining a single taxonomic group, as communities comprise a plethora of interactions across species and trophic levels. Here, we examine …