Science Enabled by Specimen Data

We record for the first time Acanthagrion jessei, Nehalennia minuta, and Perilestes solutus in Colombia, based on males and females taken at the campus Barcelona at the Universidad de Los Llanos, located in the foothills of the Colombian Eastern Andes in the Orinoco river basin.

Rautsaw, R. M., G. Jiménez-Velázquez, E. P. Hofmann, L. R. V. Alencar, C. I. Grünwald, M. Martins, P. Carrasco, et al. 2022. VenomMaps: Updated species distribution maps and models for New World pitvipers (Viperidae: Crotalinae). Scientific Data 9. https://doi.org/10.1038/s41597-022-01323-4

Beyond providing critical information to biologists, species distributions are useful for naturalists, curious citizens, and applied disciplines including conservation planning and medical intervention. Venomous snakes are one group that highlight the importance of having accurate information given their cosmopolitan distribution and medical significance. Envenomation by snakebite is considered a neglected tropical disease by the World Health Organization and venomous snake distributions are used to assess vulnerability to snakebite based on species occurrence and antivenom/healthcare accessibility. However, recent studies highlighted the need for updated fine-scale distributions of venomous snakes. Pitvipers (Viperidae: Crotalinae) are responsible for >98% of snakebites in the New World. Therefore, to begin to address the need for updated fine-scale distributions, we created VenomMaps, a database and web application containing updated distribution maps and species distribution models for all species of New World pitvipers. With these distributions, biologists can better understand the biogeography and conservation status of this group, researchers can better assess vulnerability to snakebite, and medical professionals can easily discern species found in their area. Measurement(s) Species Distributions Technology Type(s) Geographic Information System • Species Distribution Model (MaxEnt/kuenm) Factor Type(s) Occurrence Records • Environmental Data Sample Characteristic - Organism Crotalinae Sample Characteristic - Location North America • South America

Shirey, V., R. Khelifa, L. K. M’Gonigle, and L. M. Guzman. 2022. Occupancy–detection models with museum specimen data: Promise and pitfalls. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210x.13896

1. Historical museum records provide potentially useful data for identifying drivers of change in species occupancy. However, because museum records are typically obtained via many collection methods, methodological developments are needed in order to enable robust inferences. Occupancy‐detection models, a relatively new and powerful suite of statistical methods, are a potentially promising avenue because they can account for changes in collection effort through space and time.

Gainsbury, A. M., E. G. Santos, and H. Wiederhecker. 2022. Does urbanization impact terrestrial vertebrate ectotherms across a biodiversity hotspot? Science of The Total Environment 835: 155446. https://doi.org/10.1016/j.scitotenv.2022.155446

Urbanization is increasing at an alarming rate altering biodiversity. As urban areas sprawl, it is vital to understand the effects of urbanization on biodiversity. Florida is ideal for this research; it has many reptile species and has experienced multiple anthropogenic impacts. Herein, we aim to evaluate human impacts on registered reptile richness across an urbanization gradient in Florida. The expectation is that highly urbanized areas would harbor a lower number of species. To represent urbanization, we used Venter et al. (2016) human footprint index. We downloaded georeferenced occurrence records from the Global Biodiversity Information Facility to collate species richness. We ran generalized linear regressions controlling for spatial autocorrelation structure to test the association between urbanization and reptile records across Florida. We found a positive association between urbanization and registered reptiles across Florida for total and non-native species richness; however, a lack of association occurred for native species. We performed rarefaction curves due to an inherent bias of citizen science data. The positive association was supported for non-native reptile species richness with greater species richness located at urban centers. Interestingly, total and native species richness were largest at low as well as moderate levels of urbanization. Thus, moderately urbanized areas may have the potential to harbor a similar number of reptile species compared to areas with low urbanization. Nevertheless, a difference exists in sample completeness between the urbanization categories. Thus, a more systematic monitoring of reptile species across an urbanization gradient, not only focusing on urban and wild areas but also including moderate levels of urbanization, is needed to provide informed conservation strategies for urban development planning. Advances in environmental sensors, environmental DNA, and citizen science outreach are necessary to implement if we are to effectively monitor biodiversity at the accelerated rate of urbanization.

Li, D., Z. Li, Z. Liu, Y. Yang, A. G. Khoso, L. Wang, and D. Liu. 2022. Climate change simulations revealed potentially drastic shifts in insect community structure and crop yields in China’s farmland. Journal of Pest Science. https://doi.org/10.1007/s10340-022-01479-3

Climate change will cause drastic fluctuations in agricultural ecosystems, which in turn may affect global food security. We used ecological niche modeling to predict the potential distribution for four cereal aphids (i.e., Sitobion avenae, Rhopalosiphum padi, Schizaphis graminum, and Diurphis noxia…

García‐Rodríguez, A., M. D. Basanta, M. G. García‐Castillo, H. Zumbado‐Ulate, K. Neam, S. Rovito, C. L. Searle, and G. Parra‐Olea. 2021. Anticipating the potential impacts of Batrachochytrium salamandrivorans on Neotropical salamander diversity. Biotropica 54: 157–169. https://doi.org/10.1111/btp.13042

Emergent infectious disease caused by the fungal pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal) represents one of the major causes of biodiversity loss in amphibians. While Bd has affected amphibians worldwide, Bsal remains restricted to Asia and Europe, b…

Lewthwaite, J. M. M., and A. Ø. Mooers. 2021. Geographical homogenization but little net change in the local richness of Canadian butterflies A. Baselga [ed.],. Global Ecology and Biogeography 31: 266–279. https://doi.org/10.1111/geb.13426

Aim: Recent studies have found that local-scale plots measured through time exhibit marked variation in the change in species richness. However, the overall effect often reveals no net change. Most studies to date have been agnostic about the identities of the species lost/gained and about the proce…

Sirois‐Delisle, C., and J. T. Kerr. 2021. Climate change aggravates non‐target effects of pesticides on dragonflies at macroecological scales. Ecological Applications 32. https://doi.org/10.1002/eap.2494

Critical gaps in understanding how species respond to environmental change limit our capacity to address conservation risks in a timely way. Here, we examine the direct and interactive effects of key global change drivers, including climate change, land use change, and pesticide use, on persistence …

Vega, G. C., L. R. Pertierra, J. Benayas, and M. Á. Olalla-Tárraga. 2021. Ensemble forecasting of invasion risk for four alien springtail (Collembola) species in Antarctica. Polar Biology 44: 2151–2164. https://doi.org/10.1007/s00300-021-02949-7

Biological invasions are one of the most important threats to Antarctic biodiversity. Springtails (Collembola) make up most of the diversity in soil arthropod communities in Antarctic terrestrial ecosystems. However, the potential range expansion of already established alien springtails and their co…

Clement, R. A., N. A. Saxton, S. Standring, P. R. Arnold, K. K. Johnson, D. R. Bybee, and S. M. Bybee. 2021. Phylogeny, migration and geographic range size evolution of Anax dragonflies (Anisoptera: Aeshnidae). Zoological Journal of the Linnean Society 194: 858–878. https://doi.org/10.1093/zoolinnean/zlab046

The genus Anax is a group of cosmopolitan dragonflies noted for its conspicuous migratory behaviours and large size. Here we present the first dated, species-level, multigene, molecular phylogeny for the group to test generic and species-limits, as well as the evolution of migration and range size. …