Science Enabled by Specimen Data

Inman, R., Franklin, J., Esque, T., & Nussear, K. (2021). Comparing sample bias correction methods for species distribution modeling using virtual species. Ecosphere, 12(3). doi:10.1002/ecs2.3422 https://doi.org/10.1002/ecs2.3422

A key assumption in species distribution modeling (SDM) with presence‐background (PB) methods is that sampling of occurrence localities is unbiased and that any sampling bias is proportional to the background distribution of environmental covariates. This assumption is rarely met when SDM practition…

Zizka, A., Antunes Carvalho, F., Calvente, A., Rocio Baez-Lizarazo, M., Cabral, A., Coelho, J. F. R., … Antonelli, A. (2020). No one-size-fits-all solution to clean GBIF. PeerJ, 8, e9916. doi:10.7717/peerj.9916 https://doi.org/10.7717/peerj.9916

Species occurrence records provide the basis for many biodiversity studies. They derive from georeferenced specimens deposited in natural history collections and visual observations, such as those obtained through various mobile applications. Given the rapid increase in availability of such data, th…

Li, X., Li, B., Wang, G., Zhan, X., & Holyoak, M. (2020). Deeply digging the interaction effect in multiple linear regressions using a fractional-power interaction term. MethodsX, 7, 101067. doi:10.1016/j.mex.2020.101067 https://doi.org/10.1016/j.mex.2020.101067

In multiple regression Y ~ β0 + β1X1 + β2X2 + β3X1 X2 + ɛ., the interaction term is quantified as the product of X1 and X2. We developed fractional-power interaction regression (FPIR), using βX1M X2N as the interaction term. The rationale of FPIR is that the slopes of Y-X1 regression along the X2 gr…

Zigler, K., Niemiller, M., Stephen, C., Ayala, B., Milne, M., Gladstone, N., … Cressler, A. (2020). Biodiversity from caves and other sub-terranean habitats of Georgia, USA. Journal of Cave and Karst Studies, 82(2), 125–167. doi:10.4311/2019lsc0125 https://doi.org/10.4311/2019LSC0125

We provide an annotated checklist of species recorded from caves and other subterranean habitats in the state of Georgia, USA. We report 281 species (228 invertebrates and 53 vertebrates), including 51 troglobionts (cave-obligate species), from more than 150 sites (caves, springs, and wells). Endemi…

Daniel, J., Horrocks, J., & Umphrey, G. J. (2019). Efficient Modelling of Presence-Only Species Data via Local Background Sampling. Journal of Agricultural, Biological and Environmental Statistics. doi:10.1007/s13253-019-00380-4 https://doi.org/10.1007/s13253-019-00380-4

In species distribution modelling, records of species presence are often modelled as a realization of a spatial point process whose intensity is a function of environmental covariates. One way to fit a spatial point process model is to apply logistic regression to an artificial case–control sample c…

Liu, X., Blackburn, T. M., Song, T., Li, X., Huang, C., & Li, Y. (2019). Risks of Biological Invasion on the Belt and Road. Current Biology, 29(3), 499–505.e4. doi:10.1016/j.cub.2018.12.036 https://doi.org/10.1016/j.cub.2018.12.036

China’s Belt and Road Initiative (BRI) is an unprecedented global development program that involves nearly half of the world’s countries [1]. It not only will have economic and political influences, but also may generate multiple environmental challenges and is a focus of considerable academic and p…

Guedes, T. B., Sawaya, R. J., Zizka, A., Laffan, S., Faurby, S., Pyron, R. A., … Antonelli, A. (2017). Patterns, biases and prospects in the distribution and diversity of Neotropical snakes. Global Ecology and Biogeography, 27(1), 14–21. doi:10.1111/geb.12679 https://doi.org/10.1111/geb.12679

Motivation: We generated a novel database of Neotropical snakes (one of the world’s richest herpetofauna) combining the most comprehensive, manually compiled distribution dataset with publicly available data. We assess, for the first time, the diversity patterns for all Neotropical snakes as well as…