Science Enabled by Specimen Data

Erickson, K. D., & Smith, A. B. (2021). Accounting for imperfect detection in data from museums and herbaria when modeling species distributions: combining and contrasting data‐level versus model‐level bias correction. Ecography. doi:10.1111/ecog.05679 https://doi.org/10.1111/ecog.05679

The digitization of museum collections as well as an explosion in citizen science initiatives has resulted in a wealth of data that can be useful for understanding the global distribution of biodiversity, provided that the well-documented biases inherent in unstructured opportunistic data are accoun…

Bontrager, M., Usui, T., Lee‐Yaw, J. A., Anstett, D. N., Branch, H. A., Hargreaves, A. L., … Angert, A. L. (2021). Adaptation across geographic ranges is consistent with strong selection in marginal climates and legacies of range expansion. Evolution. doi:10.1111/evo.14231 https://doi.org/10.1111/evo.14231

Every species experiences limits to its geographic distribution. Some evolutionary models predict that populations at range edges are less well‐adapted to their local environments due to drift, expansion load, or swamping gene flow from the range interior. Alternatively, populations near range edges…

Zizka, A., Antunes Carvalho, F., Calvente, A., Rocio Baez-Lizarazo, M., Cabral, A., Coelho, J. F. R., … Antonelli, A. (2020). No one-size-fits-all solution to clean GBIF. PeerJ, 8, e9916. doi:10.7717/peerj.9916 https://doi.org/10.7717/peerj.9916

Species occurrence records provide the basis for many biodiversity studies. They derive from georeferenced specimens deposited in natural history collections and visual observations, such as those obtained through various mobile applications. Given the rapid increase in availability of such data, th…

Cross, A. T., Krueger, T. A., Gonella, P. M., Robinson, A. S., & Fleischmann, A. S. (2020). Conservation of carnivorous plants in the age of extinction. Global Ecology and Conservation, e01272. doi:10.1016/j.gecco.2020.e01272 https://doi.org/10.1016/j.gecco.2020.e01272

Carnivorous plants (CPs)—those possessing specific strategies to attract, capture and kill animal prey and obtain nutrition through the absorption of their biomass—are harbingers of anthropogenic degradation and destruction of ecosystems. CPs exhibit highly specialised and often very sensitive ecolo…

De Jesús Hernández-Hernández, M., Cruz, J. A., & Castañeda-Posadas, C. (2020). Paleoclimatic and vegetation reconstruction of the miocene southern Mexico using fossil flowers. Journal of South American Earth Sciences, 104, 102827. doi:10.1016/j.jsames.2020.102827 https://doi.org/10.1016/j.jsames.2020.102827

Concern about the course of the current environmental problems has raised interest in investigating the different scenarios that have taken place in our planet throughout time. To that end, different methodologies have been employed in order to determine the different variables that compose the envi…

Van Treuren, R., Hoekstra, R., Wehrens, R., & van Hintum, T. (2020). Effects of climate change on the distribution of crop wild relatives in the Netherlands in relation to conservation status and ecotope variation. Global Ecology and Conservation, 23, e01054. doi:10.1016/j.gecco.2020.e01054 https://doi.org/10.1016/j.gecco.2020.e01054

Crop wild relatives (CWR) are wild plant taxa that are genetically related to a cultivated species and are considered rich sources of useful traits for crop improvement. CWR are generally underrepresented in genebanks, while their survival in nature is not guaranteed. Inventories and risk analyses a…

Goodwin, Z. A., Muñoz-Rodríguez, P., Harris, D. J., Wells, T., Wood, J. R. I., Filer, D., & Scotland, R. W. (2020). How long does it take to discover a species? Systematics and Biodiversity, 1–10. doi:10.1080/14772000.2020.1751339 https://doi.org/10.1080/14772000.2020.1751339

The description of a new species is a key step in cataloguing the World’s flora. However, this is only a preliminary stage in a long process of understanding what that species represents. We investigated how long the species discovery process takes by focusing on three key stages: 1, the collection …

Ringelberg, J. J., Zimmermann, N. E., Weeks, A., Lavin, M., & Hughes, C. E. (2020). Biomes as evolutionary arenas: Convergence and conservatism in the trans‐continental succulent biome. Global Ecology and Biogeography. doi:10.1111/geb.13089 https://doi.org/10.1111/geb.13089

Aim: Historically, biomes have been defined based on their structurally and functionally similar vegetation, but there is debate about whether these similarities are superficial, and about how biomes are defined and mapped. We propose that combined assessment of evolutionary convergence of plant fun…

Kass, J. M., Anderson, R. P., Espinosa‐Lucas, A., Juárez‐Jaimes, V., Martínez‐Salas, E., Botello, F., … Sánchez‐Cordero, V. (2019). Biotic predictors with phenological information improve range estimates for migrating monarch butterflies in Mexico. Ecography. doi:10.1111/ecog.04886 https://doi.org/10.1111/ecog.04886

Although long‐standing theory suggests that biotic variables are only relevant at local scales for explaining the patterns of species’ distributions, recent studies have demonstrated improvements to species distribution models (SDMs) by incorporating predictor variables informed by biotic interactio…

Zizka, A., Azevedo, J., Leme, E., Neves, B., Costa, A. F., Caceres, D., & Zizka, G. (2019). Biogeography and conservation status of the pineapple family (Bromeliaceae). Diversity and Distributions. doi:10.1111/ddi.13004 https://doi.org/10.1111/ddi.13004

Aim: To provide distribution information and preliminary conservation assessments for all species of the pineapple family (Bromeliaceae), one of the most diverse and ecologically important plant groups of the American tropics—a global biodiversity hotspot. Furthermore, we aim to analyse patterns of …