Science Enabled by Specimen Data

Gherghel, I., and R. A. Martin. 2024. Biotic interactions vary across species’ ranges and are likely conserved through geological time. Journal of Biogeography. https://doi.org/10.1111/jbi.14794

Aim The evolutionary interactions between western spadefoot toads (genus Spea) represent a textbook example of character displacement, facilitated by dietary specialization of one Spea species on fairy shrimp (Anostraca) when all three co‐occur. The aim of this study is to understand the covariation between predator (Spea) and prey (Anostraca) range shifts in response to climate change oscillations, and whether biotic interactions can be used to project species distribution models on different time scales when studying species with dietary specialization. Taxon: Amphibia: Spea spp. and Crustacea: Anostraca.LocationNorth America.MethodsUsing multiple modelling techniques, we first estimated the potential distribution of central and western North American fairy shrimp species (Crustacea: Anostraca) and two western spadefoot toad species (Spea bombifrons and Spea multiplicata). We then created a shrimp species richness map by aggregating individual species estimates. Third, we studied the relationship between the probability of spadefoot toad presence and fairy shrimp species richness during the present and Last Glacial Maximum conditions. Finally, we estimated the strength and direction of the co‐occurrence between spadefoot toads and fairy shrimp sampled at the level of entire predicted range and at the regional level (allopatric and sympatric).ResultsFirst, the same abiotic environmental variables shape spadefoot toad and fairy shrimp species' distributions in central and western North America across time. Second, areas of sympatry of Spea bombifrons and Spea multiplicata correspond with dry conditions and higher shrimp richness. Finally, the spatial patterns of predator–prey co‐occurrence are highly variable across geography, forming a spatial mosaic over the species' ranges.Main ConclusionPredator–prey relationships form a spatial mosaic across geography and species ranges. Including biotic interactions into species distribution estimates for organisms with dietary specialization is highly recommended. Biotic interactions can be projected across different time frames for organisms with dietary specialization as they are likely conserved.

Vázquez-Rueda, E., A. P. Cuervo-Robayo, and J. Ayala-Berdon. 2023. Forest dependency could be more important than dispersal capacity for habitat connectivity of four species of insectivorous bats inhabiting a highly anthropized region in central Mexico. Mammal Research. https://doi.org/10.1007/s13364-023-00707-0

The maintenance, restoration, and improvement of habitat structure are critical for biodiversity conservation. Under this context, studies assessing habitat connectivity become essential, especially those focused on anthropized regions holding high species richness. We calculated the habitat connectivity of four species of insectivorous bats with different dispersal capacity and habitat preferences in a highly anthropized region in central Mexico, Idionycteris phyllotis and Myotis thysanodes , with a high dispersal capacity and forest-dependency, and Eptesicus fuscus with a low dispersal capacity, and Tadarida brasiliensis with a high dispersal capacity, as the more tolerant bat species to anthropogenic disturbance. We developed niche-based species distribution models to identify suitable habitat patches for each species. We then assessed habitat connectivity and the importance of suitable habitat patches for maintaining connectivity using a graph theory approach. Our results showed that forest dependency was most important than dispersal capacity for connectivity. We also found that the Iztaccíhuatl-Popocatépetl mountain, a National Park comprising 4.2% of natural vegetation in the study area, was the most critical patch for maintaining connectivity for most of the study species. Our study demonstrates the importance of conserving the remnants of natural vegetation for maintaining habitat connectivity within a fragmented landscape and demonstrates the importance of conserving protected areas as well as other remnants of vegetation for the maintenance of habitat connectivity within a fragmented landscape.

Bharti, D. K., P. Y. Pawar, G. D. Edgecombe, and J. Joshi. 2023. Genetic diversity varies with species traits and latitude in predatory soil arthropods (Myriapoda: Chilopoda). Global Ecology and Biogeography. https://doi.org/10.1111/geb.13709

Aim To investigate the drivers of intra-specific genetic diversity in centipedes, a group of ancient predatory soil arthropods. Location Asia, Australasia and Europe. Time Period Present. Major Taxa Studied Centipedes (Class: Chilopoda). Methods We assembled a database of 1245 mitochondrial cytochrome c oxidase subunit I sequences representing 128 centipede species from all five orders of Chilopoda. This sequence dataset was used to estimate genetic diversity for centipede species and compare its distribution with estimates from other arthropod groups. We studied the variation in centipede genetic diversity with species traits and biogeography using a beta regression framework, controlling for the effect of shared evolutionary history within a family. Results A wide variation in genetic diversity across centipede species (0–0.1713) falls towards the higher end of values among arthropods. Overall, 27.57% of the variation in mitochondrial COI genetic diversity in centipedes was explained by a combination of predictors related to life history and biogeography. Genetic diversity decreased with body size and latitudinal position of sampled localities, was greater in species showing maternal care and increased with geographic distance among conspecifics. Main Conclusions Centipedes fall towards the higher end of genetic diversity among arthropods, which may be related to their long evolutionary history and low dispersal ability. In centipedes, the negative association of body size with genetic diversity may be mediated by its influence on local abundance or the influence of ecological strategy on long-term population history. Species with maternal care had higher genetic diversity, which goes against expectations and needs further scrutiny. Hemispheric differences in genetic diversity can be due to historic climatic stability and lower seasonality in the southern hemisphere. Overall, we find that despite the differences in mean genetic diversity among animals, similar processes related to life-history strategy and biogeography are associated with the variation within them.

Clemente, K. J. E., and M. S. Thomsen. 2023. High temperature frequently increases facilitation between aquatic foundation species: a global meta‐analysis of interaction experiments between angiosperms, seaweeds, and bivalves. Journal of Ecology. https://doi.org/10.1111/1365-2745.14101

Many studies have quantified ecological impacts of individual foundation species (FS). However, emerging data suggest that FS often co‐occur, potentially inhibiting or facilitating one another, thereby causing indirect, cascading effects on surrounding communities. Furthermore, global warming is accelerating, but little is known about how interactions between co‐occurring FS vary with temperature.Shallow aquatic sedimentary systems are often dominated by three types of FS: slower‐growing clonal angiosperms, faster‐growing solitary seaweeds, and shell‐forming filter‐ and deposit‐feeding bivalves. Here, we tested the impacts of one FS on another by analyzing manipulative interaction experiments from 148 papers with a global meta‐analysis.We calculated 1,942 (non‐independent) Hedges’ g effect sizes, from 11,652 extracted values over performance responses, such as abundances, growths or survival of FS, and their associated standard deviations and replication levels. Standard aggregation procedures generated 511 independent Hedges’ g that was classified into six types of reciprocal impacts between FS.We found that (i) seaweeds had consistent negative impacts on angiosperms across performance responses, organismal sizes, experimental approaches, and ecosystem types; (ii) angiosperms and bivalves generally had positive impacts on each other (e.g., positive effects of angiosperms on bivalves were consistent across organismal sizes and experimental approaches, but angiosperm effect on bivalve growth and bivalve effect on angiosperm abundance were not significant); (iii) bivalves positively affected seaweeds (particularly on growth responses); (iv) there were generally no net effects of seaweeds on bivalves (except for positive effect on growth) or angiosperms on seaweeds (except for positive effect on ‘other processes’); and (v) bivalve interactions with other FS were typically more positive at higher temperatures, but angiosperm‐seaweed interactions were not moderated by temperature.Synthesis: Despite variations in experimental and spatiotemporal conditions, the stronger positive interactions at higher temperatures suggest that facilitation, particularly involving bivalves, may become more important in a future warmer world. Importantly, addressing research gaps, such as the scarcity of FS interaction experiments from tropical and freshwater systems and for less studied species, as well as testing for density‐dependent effects, could better inform aquatic ecosystem conservation and restoration efforts and broaden our knowledge of FS interactions in the Anthropocene.

Chaudhary, C., J. M. Alfaro-Lucas, M. V. P. Simões, A. Brandt, and H. Saeedi. 2023. Potential geographic shifts in the coral reef ecosystem under climate change. Progress in Oceanography 213: 103001. https://doi.org/10.1016/j.pocean.2023.103001

The coral reefs are the most diverse marine ecosystem in the world. Considering its contribution as a natural resource for humanity and global biodiversity, it is critical to understand its response to climatic change. To date, no global predictions have been made about potential ecosystem changes in relation to its inhabiting species. Predicting changes in species' climatic suitability under increasing temperature and comparing them among species would be the first step in understanding the geographic and taxonomic coherence and discrepancies that may occur within the ecosystem. Using 57 species-specific global climate suitability models (of corals, molluscs, fish, crustaceans, and polychaetes) under present and future climate scenarios (RCP 4.5 and 8.5), we compared the potential coherence and differences and their cumulative impact on the ecosystem in warm, cold, shallow, and deep waters.Under the climatic scenarios, nearly 90% of 30 warm-water species were predicted to lose their suitability in the parts of the Indo-west Pacific, the Coast of Northern Australia, the South China Sea, the Caribbean Sea, and the Gulf of Mexico, resulting in the overall southward shift in their distributions. In contrast, a mixed response occurred in 27 cold-water species, with most northern temperate/boreal ones increasing their suitability in the Arctic Ocean and the Arctic species declining overall. We noticed that irrespective of their taxonomic group, the species with wider distribution ranges (thermal and geographic) had larger predicted gains in their suitability than their stenothermal counterparts, suggesting an increase of generalist species and a decline of specialist (endemic) species of the ecosystem under a warming climate.Our coherent projections of species' climatic suitability in warm and cold habitats of the tropics, temperate, boreal, and the Arctic, represent significant taxonomic groups of the ecosystem. This might indicate mass extinction risk (local– in the tropics and northern temperate regions, and overall– in the Arctic) in native habitats and a high species turnover across the ecosystem under a warming climate. This may also destabilise predator–prey dynamics in the ecosystem, especially if foraging specialists dominate coral food webs and adversely affect the associated countries. Our global projections highlight the regions of species’ potential loss and gain; stakeholders could use the information to protect biodiversity and maintain human well-being.

Emiroğlu, Ö., S. Aksu, S. Başkurt, J. R. Britton, and A. S. Tarkan. 2023. Predicting how climate change and globally invasive piscivorous fishes will interact to threaten populations of endemic fishes in a freshwater biodiversity hotspot. Biological Invasions. https://doi.org/10.1007/s10530-023-03016-4

Freshwater ecosystems are highly vulnerable to the detrimental impacts of both biological invasions and climate change. Piscivorous alien fishes drive populations of small-bodied native fishes to extinction and warming is already driving extreme temperature events in lakes and rivers globally. Here, we use Ecological Niche Modelling (ENM) to predict how climate change will alter the geographical space of six alien fishes and five native fish genera (which include multiple endemic species) in Turkey, a hotspot of freshwater fish diversity. The models predicted that the geographical space of the alien fishes already present in Turkey would generally increase (including pikeperch Sander lucioperca and perch Perca fluviatilis ), but with the most substantial increases in largemouth bass Micropterus salmoides , a species not yet present in Turkey but that is invasive in countries nearby and is highly popular for sport angling. For the native fish genera, general predictions were for reduced geographical space, especially in the south and east of the country, suggesting the endemic species will become increasingly imperilled in future. Their populations will also be at increasing risk of deleterious impacts from the alien piscivores, as the predictions were also for increasing overlaps in the geographical space of both the alien fishes and native fish genera. These predictions suggest that the conservation of these endemic species need to consider measures on preventing both the introduction of alien species (e.g. largemouth bass) and the further dispersal of extant alien species (e.g. pikeperch), as well as habitat interventions that will limit the effects of climate change on their populations. These results also indicate that the combination of climate change and alien invasions could have substantial impacts on—and similar—hotspots of freshwater diversity.

Rodríguez-Rey, M., and G. Grenouillet. 2022. Disentangling the Drivers of the Sampling Bias of Freshwater Fish across Europe. Fishes 7: 383. https://doi.org/10.3390/fishes7060383

The Wallacean shortfall refers to the knowledge gap in biodiversity distributions. There is still limited knowledge for freshwater fish species despite the importance of focusing conservation efforts towards this group due to their alarming extinction risk and the increasing human pressure on freshwater ecosystems. Here, we addressed the Wallacean shortfall for freshwater fish faunas across Europe by using the completeness indicator derived from species accumulation curves to quantify the fish sampling efforts. The multiple potential drivers of completeness that were previously related to the sampling efforts for other species (i.e., population density, nature reserves, or distance to cities) were tested using a 10 × 10 km2 grid resolution, as well as environmental (e.g., climatic) factors. Our results suggested that although there was an overall spatial pattern at the European level, the completeness was highly country-dependent. Accessibility parameters explained the sampling efforts, as for other taxa. Likewise, climate factors were related to survey completeness, possibly pointing to the river conditions required for fish sampling. The survey effort map we provide can be used to optimize future sampling, aiming at filling the data gaps in undersampled regions like the eastern European countries, as well as to account for the current bias in any ecological modeling using such data, with important implications for conservation and management.

Kaptyonkina, A. G., T. N. Dujsebayeva, K. M. Akhmedenov, V. A. Khromov, V. N. Krainyuk, F. Sarzhanov, S. V. Starikov, et al. 2022. The range of marsh frogs (complex Pelophylax ridibundus, Amphibia, Ranidae) in Kazakhstan: Progressive dispersal or cyclic fluctuations? Proceedings of the Zoological Institute RAS 326: 211–238. https://doi.org/10.31610/trudyzin/2022.326.3.211

According to 2005 data, during the second half of the 20th century, the range of marsh frogs (Pelophylax ridibundus complex) in Kazakhstan almost doubled, which was facilitated by the unintentional introduction of these amphibians in the central and eastern regions of the country against the backdrop of favorable climate change. This paper analyzes the results of the next monitoring of the distribution of the marsh frogs in Kazakhstan in the light of the hypothesis of the ongoing dispersal of amphibians throughout the country. During the revision of literature, museum and archival materials over the past 15 years and the analysis of the authors’ field data for 2021, about 500 amphibian sighting points were collected, which is almost 2 times higher than previously known information. It has been established that the modern range of the complex occupies the territory of all major hydrographic basins of Kazakhstan: The Ural-Emba, Aral-Syrdarya, Nura-Tengiz, Balkhash-Alakol, Tobol-Ishim and Irtysh basins, of which only the last two belong to the area of oceanic runoff, the rest are the drainless inland. A chronological analysis of the data obtained for each basin made it possible to conclude that over the historical period the area of the marsh frogs’ range has changed, but mainly due to periodic reductions or expansions within the drainless inland basins, the level and mineralization of water bodies of which are determined by cyclic climate fluctuations. In a broad sense, it is proposed to talk about the constancy of the autochthonous range of the marsh frogs in the west, south and southeast of Kazakhstan. The phenomenon of “settlement” includes the movements of lake frogs within the Nura-Tengiz and Irtysh basins, where they did not live in the historical past. In geological retrospect, this process probably restores the boundaries of the Neogene distribution of representatives of the P. ridibundus complex. From the point of view of the genetic composition of the complex, one can speak of the dispersal or even expansion of the Anatolian P. cf. bedriagae, which has successfully advanced to all regions of Kazakhstan from the eastern borders of its autochthonous range in the Caspian Plain and the coasts of the Mangyshlak Peninsula.

Bosso, L., S. Smeraldo, D. Russo, M. L. Chiusano, G. Bertorelle, K. Johannesson, R. K. Butlin, et al. 2022. The rise and fall of an alien: why the successful colonizer Littorina saxatilis failed to invade the Mediterranean Sea. Biological Invasions. https://doi.org/10.1007/s10530-022-02838-y

Understanding what determines range expansion or extinction is crucial to predict the success of biological invaders. We tackled this long-standing question from an unparalleled perspective using the failed expansions in Littorina saxatilis and investigated its present and past habitat suitability in Europe through Ecological Niche Modelling. This intertidal snail is a typically successful Atlantic colonizer and the earliest confirmed alien species in the Mediterranean Sea, where, however, it failed to thrive despite its high dispersal ability and adaptability. We explored the environmental constraints affecting its biogeography, identified potential glacial refugia in Europe that fuelled its post-glacial colonisations and tested whether the current gaps in its distribution are linked to local ecological features. Our results suggested that L. saxatilis is unlikely to be a glacial relict in the Mediterranean basin. Multiple Atlantic glacial refugia occurred in the Last Glacial Maximum, and abiotic environmental features such as salinity and water temperature have influenced the past and current distributions of this snail and limited its invasion of the Mediterranean Sea. The snail showed a significant overlap in geographic space and ecological niche with Carcinus maenas , the Atlantic predator, but distinct from Pachygrapsus marmoratus , the Mediterranean predator, further pointing to Atlantic-like habitat requirements for this species. Abiotic constrains during introduction rather than dispersal abilities have shaped the past and current range of L. saxatilis and help explaining why some invasions have not been successful. Our findings contribute to clarifying the processes constraining or facilitating shifts in species’ distributions and biological invasions.

Marshall, B. M., C. T. Strine, C. S. Fukushima, P. Cardoso, M. C. Orr, and A. C. Hughes. 2022. Searching the web builds fuller picture of arachnid trade. Communications Biology 5. https://doi.org/10.1038/s42003-022-03374-0

Wildlife trade is a major driver of biodiversity loss, yet whilst the impacts of trade in some species are relatively well-known, some taxa, such as many invertebrates are often overlooked. Here we explore global patterns of trade in the arachnids, and detected 1,264 species from 66 families and 371 genera in trade. Trade in these groups exceeds millions of individuals, with 67% coming directly from the wild, and up to 99% of individuals in some genera. For popular taxa, such as tarantulas up to 50% are in trade, including 25% of species described since 2000. CITES only covers 30 (2%) of the species potentially traded. We mapped the percentage and number of species native to each country in trade. To enable sustainable trade, better data on species distributions and better conservation status assessments are needed. The disparity between trade data sources highlights the need to expand monitoring if impacts on wild populations are to be accurately gauged and the impacts of trade minimised. Trade in arachnids includes millions of individuals and over 1264 species, with over 70% of individuals coming from the wild.