Science Enabled by Specimen Data

Knippers, R. H. M., Gallois, S., & van Andel, T. (2021). Commercialization of Aframomum spp. in Africa: a Systematic Review of Literature and Supporting Botanical Vouchers. Economic Botany. doi:10.1007/s12231-021-09517-4 https://doi.org/10.1007/s12231-021-09517-4

Aframomum (Zingiberaceae) is a genus of plants native to tropical Africa that are sold on African markets as spices and traditional medicine. Not all species of Aframomum are equally abundant or widespread, and no overview exists of the specific species traded or the quality of the species identific…

Akin-Fajiye, M., & Akomolafe, G. F. (2021). Disturbance is an important predictor of the distribution of Lantana camara and Chromolaena odorata in Africa. Vegetos. doi:10.1007/s42535-020-00179-6 https://doi.org/10.1007/s42535-020-00179-6

Most studies of invasion have used climatic variables without considering the importance of disturbance on the distribution of the species. In this study, MAXENT was used to model how disturbance, in addition to climatic factors, can affect the invasion of two of the most problematic plant invaders …

Pang, S. E. H., De Alban, J. D. T., & Webb, E. L. (2021). Effects of climate change and land cover on the distributions of a critical tree family in the Philippines. Scientific Reports, 11(1). doi:10.1038/s41598-020-79491-9 https://doi.org/10.1038/s41598-020-79491-9

Southeast Asian forests are dominated by the tree family Dipterocarpaceae, whose abundance and diversity are key to maintaining the structure and function of tropical forests. Like most biodiversity, dipterocarps are threatened by deforestation and climate change, so it is crucial to understand the …

Allstädt, F. J., Koutsodendris, A., Appel, E., Rösler, W., Reichgelt, T., Kaboth-Bahr, S., … Pross, J. (2021). Late Pliocene to early Pleistocene climate dynamics in western North America based on a new pollen record from paleo-Lake Idaho. Palaeobiodiversity and Palaeoenvironments. doi:10.1007/s12549-020-00460-1 https://doi.org/10.1007/s12549-020-00460-1

Marked by the expansion of ice sheets in the high latitudes, the intensification of Northern Hemisphere glaciation across the Plio/Pleistocene transition at ~ 2.7 Ma represents a critical interval of late Neogene climate evolution. To date, the characteristics of climate change in North America duri…

Deanna, R., Wilf, P., & Gandolfo, M. A. (2020). New physaloid fruit‐fossil species from early Eocene South America. American Journal of Botany, 107(12), 1749–1762. doi:10.1002/ajb2.1565 https://doi.org/10.1002/ajb2.1565

Premise: Solanaceae is a scientifically and economically important angiosperm family with a minimal fossil record and an intriguing early evolutionary history. Here, we report a newly discovered fossil lantern fruit with a suite of features characteristic of Physalideae within Solanaceae. The fossil…

Iqbal, I., Shabbir, A., Shabbir, K., Barkworth, M., Bareen, F., & Khan, S. (2020). Evolvulus nummularius (L.) L. (Convolvulaceae): a new alien plant record for Pakistan. BioInvasions Records, 9(4), 702–711. doi:10.3391/bir.2020.9.4.04 https://doi.org/10.3391/bir.2020.9.4.04

Evolvulus nummularius (L.) L., a member of the Convolvulaceae, is native to Mexico and South America but nowadays grows around the world in many tropical and subtropical regions. Its presence in Pakistan, where it has become naturalized, is reported here for the first time. It was first discovered i…

Del Rio, C., Huang, J., Liu, P., Deng, W., Spicer, T. E. V., Wu, F., … Su, T. (2020). New Eocene fossil fruits and leaves of Menispermaceae from the central Tibetan Plateau and their biogeographic implications. Journal of Systematics and Evolution. doi:10.1111/jse.12701 https://doi.org/10.1111/jse.12701

Menispermaceae are a pantropical and temperate family with an extensive fossil record during the Paleogene, especially in North America and Europe, but with much less evidence from Asia. The latest fossil evidence indicates a succession of tropical to sub‐tropical flora on the central Tibetan Platea…

Rozefelds, A. C., Stull, G., Hayes, P., & Greenwood, D. R. (2020). The fossil record of Icacinaceae in Australia supports long-standing Palaeo-Antarctic rainforest connections in southern high latitudes. Historical Biology, 1–11. doi:10.1080/08912963.2020.1832089 https://doi.org/10.1080/08912963.2020.1832089

Fossil fruits of Icacinaceae are recorded from two Cenozoic sites in Australia, at Launceston in northern Tasmania and the Poole Creek palaeochannel in northern South Australia, representing the first report of fossil Icacinaceae from Australia. The Launceston material includes two endocarps with br…

Yi, S., Jun, C.-P., Jo, K., Lee, H., Kim, M.-S., Lee, S. D., … Lim, J. (2020). Asynchronous multi-decadal time-scale series of biotic and abiotic responses to precipitation during the last 1300 years. Scientific Reports, 10(1). doi:10.1038/s41598-020-74994-x https://doi.org/10.1038/s41598-020-74994-x

Loading...

Larridon, I., Galán Díaz, J., Bauters, K., & Escudero, M. (2020). What drives diversification in a pantropical plant lineage with extraordinary capacity for long‐distance dispersal and colonization? Journal of Biogeography. doi:10.1111/jbi.13982 https://doi.org/10.1111/jbi.13982

Aim: Colonization of new areas may entail shifts in diversification rates linked to biogeographical movement (dispersification), which may involve niche evolution if species were not exapted to new environments. Scleria (Cyperaceae) includes c. 250 species and has a pantropical distribution suggesti…