Science Enabled by Specimen Data
Nuñez Otaño, N. B., E. V. Pérez-Pincheira, V. Coll Moritan, and M. Llorens. 2024. Maastrichtian palaeoenvironments and palaeoclimate reconstruction in southern South America (Patagonia, Argentina) based on fossil fungi and algae using open data resources. Historical Biology: 1–15. https://doi.org/10.1080/08912963.2024.2408804
The use of non-pollen palynomorphs (NPP), particularly fossil fungi and algae, as palaeobiological proxies for Late Cretaceous palaeoenvironmental and palaeoclimatic reconstructions of warm-to-hot greenhouse conditions, can enhance our understanding of climate change impacts on modern Patagonian environments. This study aimed to reconstruct the Maastrichtian palaeoenvironment and palaeoclimate in the Cañadón Asfalto Basin (CAB, Chubut Province) by testing these NPPs as proxies using the Nearest Living Relative method (NLR). Moreover, using modern ecological requirements from open-source databases, such as GBIF and processing it with an open-source, cross-platform tool like QGIS, linked with Köppen-Geiger shapefiles, provided evidence of climate-driven palaeo-distribution patterns of fungal and algal diversity at CAB. Applying modern ecological requirements and biogeographic distribution data, we reconstructed the palaeoclimate as temperate with evenly distributed precipitation and warm summers, corresponding to the Cfb climate zone in Köppen-Geiger classifications. Additionally, our methodology produced reliable results regarding Cenozoic floras’ physiognomies based on fossil fungi, revealing a transition from sparsely wooded areas with palms and prairies to complex forest ecosystems with palms, deciduous trees, and shrubland. Furthermore, testing Cretaceous algae with the NLR method, for the first time, provided comprehensive insights into past water body characteristics, including trophic state and water quality.
Quirk, Z. J., S. Y. Smith, R. Paul Acosta, and C. J. Poulsen. 2024. Where did they come from, where did they go? Niche conservatism in woody and herbaceous plants and implications for plant‐based paleoclimatic reconstructions. American Journal of Botany 111. https://doi.org/10.1002/ajb2.16426
AbstractPremiseThe ecological conditions that constrain plants to an environmental niche are assumed to be constant through time. While the fossil record has been used previously to test for niche conservatism of woody flowering plants, additional studies are needed in other plant groups especially since they can provide insight with paleoclimatic reconstructions, high biodiversity in modern terrestrial ecosystems, and significant contributions to agriculture.MethodsWe tested climatic niche conservatism across time by characterizing the climatic niches of living herbaceous ginger plants (Zingiberaceae) and woody dawn redwood (Metasequoia) against paleoniches reconstructed based on fossil distribution data and paleoclimatic models.ResultsDespite few fossil Zingiberaceae occurrences in the latitudinal tropics, unlike living Zingiberaceae, extinct Zingiberaceae likely experienced paratropical conditions in the higher latitudes, especially in the Cretaceous and Paleogene. The living and fossil distributions of Metasequoia largely remain in the upper latitudes of the northern hemisphere. The Zingiberaceae shifted from an initial subtropical climatic paleoniche in the Cretaceous, toward a temperate regime in the late Cenozoic; Metasequoia occupied a more consistent climatic niche over the same time intervals.ConclusionsBecause of the inconsistent climatic niches of Zingiberaceae over geologic time, we are less confident of using them for taxonomic‐based paleoclimatic reconstruction methods like nearest living relative, which assume a consistent climatic niche between extant and extinct relatives; we argue that the consistent climatic niche of Metasequoia is more appropriate for these reconstructions. Niche conservatism cannot be assumed between extant and extinct plants and should be tested further in groups used for paleoclimatic reconstructions.
Gori, B., A. Vecchia, M. Amoruso, G. Pezzi, G. Brundu, A. Stinca, and C. Lambertini. 2024. Invasion trends of aquatic Ludwigia hexapetala and L. peploides subsp. montevidensis (Onagraceae) in Italy based on herbarium records and global datasets. Management of Biological Invasions 15: 313–336. https://doi.org/10.3391/mbi.2024.15.3.02
Identifying areas susceptible to invasion by an alien species is a strategy of prevention. We used national herbaria and global databases to assess the invasion trends of the two aquatic invasive species Ludwigia hexapetala and Ludwigia peploides subsp. montevidensis in Italy. We defined the invasion status with invasion curves and predicted potentially suitable areas with Species Distribution Models based on WorldClim variables and the human footprint index. Low seasonal variation in temperature and precipitation, temperature ≥ 20 °C in the driest period of the year and low precipitation in the coldest period are the bioclimatic factors that most account for the potential distribution of the two species. The human footprint has a lower relative importance than bioclimatic variables. All Italian peninsula appears as a suitable bioclimatic environment for the invasion of the two Ludwigia species, with over 90% of areas with high suitability lying below 600 m altitude. Only mountain regions and the islands appear less suitable. The agricultural land at the foothill of the Appennine in the Mediterranean region is the most vulnerable to the invasion. Considering the trend of the invasion curves, which have been sharply rising for the latest decades, there are reasons to expect that the alien Ludwigia species will continue their expansion, if no timely and effective actions are taken. Informative campaigns, accurate monitoring and prompt management are fundamental preventive tools in areas predicted as vulnerable to invasion by this study.
Ackerman, J. D., W. Recart, L. Soifer, W. Falcón, and C. Baider. 2024. Invasions of the bamboo orchid: performance variability on islands oceans apart. Biological Invasions. https://doi.org/10.1007/s10530-024-03442-y
Traits associated with successful biological invasions across environmental gradients or geographical distances may vary depending on processes such as founder effects, ecological sorting, or adaptation to local conditions. Consequently, drivers of success are not necessarily consistent throughout the invasive range. We evaluate how plant traits, reproductive success and climatic preferences vary in populations of a naturalized orchid on islands in the Atlantic, Pacific and Indian oceans. Populations of Arundina graminifolia (bamboo orchid) were located on Puerto Rico, Hawaiian Islands (Hawai’i, O’ahu, Kaua’i), and Mauritius. Vegetative and reproductive traits were measured, and male and female success were assessed. Populations were compared using multivariate approaches. Species distribution modeling was used to assess potential climatic preferences within and among islands. Floral morphology differed among islands but considerable overlap in trait distributions exists. Reproductive success significantly differed among islands and was linked to floral traits, local pollinator pools and perhaps variable levels of florivory. Hawaiian populations occupied the broadest climatic niche space and Mauritius the most restricted. The effectiveness of using present points from the native range to reveal climatic suitability on invaded islands varied among islands. Successful invasions across a broad geographical range can occur even when morphology, reproductive success and climatic conditions are variable. As expected, some aspects of this global invasion are similar, but others differ among islands underscoring the context dependency of biological invasions and the difficulty of overall predictions. Los rasgos asociados a las invasiones biológicas exitosas a través de gradientes ambientales o distancias geográficas pueden variar dependiendo de procesos tales como el efecto fundador, el sorteo ecológico, o las adaptaciones a las condiciones locales. Consecuentemente, los impulsores del éxito no son necesariamente consistentes a través de la distribución invadida. Nosotros evaluamos cómo los rasgos, el éxito reproductivo y las preferencias climáticas varían en poblaciones de una orquídea naturalizada en islas de los océanos Atlántico, Pacífico e Índico. Las poblaciones de Arundina graminifolia (orquídea bambú) estaban localizadas en Puerto Rico, las Islas Hawaianas (Hawai’i, O’ahu, Kaua’i) y en la Isla de Mauricio. Los rasgos vegetativos y reproductivos fueron medidos, y el éxito reproductivo masculino y femenino fue evaluado. Comparamos las poblaciones usando enfoques estadísticos multivariados. También usamos modelos de distribución de especies para evaluar las preferencias climáticas tanto dentro de las islas, así como entre ellas. La morfología floral difirió entre islas, pero existe un sobrelapamiento considerable en la distribución de rasgos. El éxito reproductivo fue significativamente diferente entre islas, y estuvo ligado a los rasgos florales, el conjunto de polinizadores locales y, quizá, a niveles variables de florivoría. Las poblaciones hawaianas ocuparon el nicho climático más amplio mientras que las mauricianas ocuparon el más restringido. La efectividad de usar puntos de presencia de la distribución nativa para revelar la adecuación climática de las islas invadidas varió entre islas. Encontramos que las invasiones exitosas a través de una distribución geográfica amplia pueden ocurrir a pesar de la variabilidad en morfología, éxito reproductivo y condiciones climáticas. Como era de esperarse, algunos aspectos de esta invasión global son similares, pero otros difieren entre islas, haciendo hincapié en la dependencia del contexto de las invasiones biológicas y la dificultad de hacer predicciones generalizadas. Les traits associés aux invasions biologiques sur des gradients environnementaux ou des distances géographiques peuvent varier en fonction de processus tels que les effets fondateurs, le tri écologique ou l'adaptation aux conditions locales. Par conséquent, les facteurs de réussite ne sont pas nécessairement cohérents dans l'ensemble de l'aire de répartition de l'invasion. Nous évaluons comment les caractéristiques des plantes, le succès de la reproduction et les préférences climatiques varient dans les populations d'une orchidée naturalisée sur des îles des océans Atlantique, Pacifique et Indien. Les populations d'Arundina graminifolia (orchidée bambou) ont été localisées à Porto Rico, dans les îles hawaïennes (Hawai'i, O'ahu, Kaua'i) et à l'île Maurice. Les traits végétatifs et reproductifs ont été mesurés, et le succès reproductifs des mâles et des femelles a été évalué. Les populations ont été comparées à l'aide d'approches multivariées. La modélisation de la distribution des espèces a été utilisée pour évaluer les préférences climatiques potentielles au sein des îles et entre elles. La morphologie florale diffère d'une île à l'autre, mais il existe un chevauchement considérable dans la répartition des caractéristiques. Le succès de la reproduction diffère significativement entre les îles et est lié aux caractéristiques florales, aux réservoirs locaux de pollinisateurs et peut-être à des niveaux variables de florivorie. Les populations hawaïennes ont occupé la niche climatique la plus large et les populations mauriciennes la plus restreinte. L'efficacité de l'utilisation de points de présences dans l'aire de répartition indigène pour révéler l'adéquation climatique des îles envahies varie d'une île à l'autre. Des invasions réussies sur une vaste aire de répartition géographique peuvent se produire même lorsque la morphologie, le succès de la reproduction et les conditions climatiques sont variables. Comme prévu, certains aspects de cette invasion mondiale sont similaires, mais d'autres diffèrent d'une île à l'autre, ce qui souligne l’importance du contexte des invasions biologiques et la difficulté des prédictions globales.
Lin, P.-C., T.-Y. Chiang, M.-L. Chen, T.-W. Hsu, P.-W. Gean, S.-T. Cheng, and Y.-H. Hsu. 2024. Global prospects for cultivating Centella asiatica: An ecological niche modeling approach under current and future climatic scenarios. Journal of Agriculture and Food Research 18: 101380. https://doi.org/10.1016/j.jafr.2024.101380
Centella asiatica is a medicinal plant recognized for its various benefits contributed by its metabolites and has been used as a food supplement since prehistorical times across various cultures. Due to the reliance on natural populations of C. asiatica and the impacts of environmental factors on its yield and centelloside production, there is a need to identify suitable cultivation areas for this species. We employed ecological niche modelling with bioclimatic and soil variables to evaluate the suitability of cultivation under current and future climatic scenarios. Our results identified suitable areas for cultivating C. asiatica worldwide, indicating its potential for global commercial cultivation. However, the niche reconstruction of highly concentrated centelloside was restricted to South and Southeast Asia due to the lack of available data. When we projected the modelled niche of centelloside in these regions, we observed a lower occurrence probability in some areas, suggesting potential challenges in cost-effectiveness. Nevertheless, our results suggest a consistent future distribution for this species when we projected the modelled niche under future climates based on various socio-economic scenarios. This study not only identifies suitable areas to develop commercial cultivation for C. asiatica with highly concentrated centelloside, but also provides supporting evidence of the consistency of these areas, which can increase its sustainability.
Saunders, T. C., I. Larridon, W. J. Baker, R. L. Barrett, F. Forest, E. Françoso, O. Maurin, et al. 2024. Tangled webs and spider‐flowers: Phylogenomics, biogeography, and seed morphology inform the evolutionary history of Cleomaceae. American Journal of Botany 111. https://doi.org/10.1002/ajb2.16399
Premise Cleomaceae is an important model clade for studies of evolutionary processes including genome evolution, floral form diversification, and photosynthetic pathway evolution. Diversification and divergence patterns in Cleomaceae remain tangled as research has been restricted by its worldwide distribution, limited genetic sampling and species coverage, and a lack of definitive fossil calibration points.MethodsWe used target sequence capture and the Angiosperms353 probe set to perform a phylogenetic study of Cleomaceae. We estimated divergence times and biogeographic analyses to explore the origin and diversification of the family. Seed morphology across extant taxa was documented with multifocal image‐stacking techniques and morphological characters were extracted, analyzed, and compared to fossil records.ResultsWe recovered a well‐supported and resolved phylogenetic tree of Cleomaceae generic relationships that includes 236 (~86%) species. We identified 11 principal clades and confidently placed Cleomella as sister to the rest of the family. Our analyses suggested that Cleomaceae and Brassicaceae diverged ~56 mya, and Cleomaceae began to diversify ~53 mya in the Palearctic and Africa. Multiple transatlantic disjunct distributions were identified. Seeds were imaged from 218 (~80%) species in the family and compared to all known fossil species.ConclusionsOur results represent the most comprehensive phylogenetic study of Cleomaceae to date. We identified transatlantic disjunctions and proposed explanations for these patterns, most likely either long‐distance dispersals or contractions in latitudinal distributions caused by climate change over geological timescales. We found that seed morphology varied considerably but mostly mirrored generic relationships.
Mu, J., Z. Li, Q. Lu, H. Yu, C. Hu, Y. Mu, and J. Qu. 2024. Overlooked drivers of the greenhouse effect: The nutrient-methane nexus mediated by submerged macrophytes. Water Research 266: 122316. https://doi.org/10.1016/j.watres.2024.122316
Submerged macrophytes remediation is a commonly used technique for improving water quality and restoring habitat in aquatic ecosystems. However, the drivers of success in the submerged macrophytes assembly process and their specific impacts on methane emissions are poorly understood. Thus, we conducted a mesocosm experiment to test the growth plasticity and carbon fixation of widespread submerged macrophytes (Vallisneria natans) under different nutrient conditions. A refined dynamic chamber method was utilized to concurrently collect and quantify methane emission fluxes arising from ebullition and diffusion processes. Significant correlations were found between methane flux and variations in the physiological activities of V. nantas by the fluorescence imaging system. Our results show that exceeding tolerance thresholds of ammonia in the water significantly interfered with the photosynthetic systems in submerged leaves and the radial oxygen loss in adventitious roots. The recovery process of V. natans accelerated the consumption of dissolved oxygen, leading to increase in the populations of methanogen (153.3 % increase of mcrA genes) and subsequently elevating CH4 emission fluxes (23.7 %) under high nutrient concentrations. Conversely, V. natans increased the available organic carbon under low nutrient conditions by radial oxygen loss, further increasing CH4 emission fluxes (94.7 %). Quantitative genetic and modeling analyses revealed that plant restoration processes drive ecological niche differentiation of methanogenic and methane oxidation microorganisms, affecting methane release fluxes within the restored area. The speciation process of V. natans is incapable of simultaneously meeting improved water purification and reduced methane emissions goals.
Marchuk, E. A., A. K. Kvitchenko, L. A. Kameneva, A. A. Yuferova, and D. E. Kislov. 2024. East Asian forest-steppe outpost in the Khanka Lowland (Russia) and its conservation. Journal of Plant Research 137: 997–1018. https://doi.org/10.1007/s10265-024-01570-z
The Khanka Lowland forest-steppe is the most eastern outpost of the Eurasian steppe biome. It includes unique grassland plant communities with rare steppe species. These coenosis have changed under the influence of anthropogenic activity, especially during the last 100 years and included both typical steppe species and nemoral mesophytic species. To distinguish these ecological groups of plants the random forest method with three datasets of environmental variables was applied. Specifically, a model of classification with the most important bioindices to predict a mesophytic ecological group of plants with a sensitivity greater than 80% was constructed. The data demonstrated the presence of steppe species that arrived at different times in the Primorye Territory. Most of these species are associated with the Mongolian-Daurian relict steppe complex and habit in the Khanka Lowland. Other species occur only in mountains in Primorye Territory and do not persist in the Khanka Lowland. These findings emphasize the presence of relict steppe communities with a complex of true steppe species in the Khanka Lowland. Steppe communities exhibit features of anthropogenic influence definitely through the long land use period but are not anthropogenic in origin. The most steppe species are located at the eastern border of distribution in the Khanka Lowlands and are valuable in terms of conservation and sources of information about steppe species origin and the emergence of the steppe biome as a whole.
Hodgson, R. J., C. Liddicoat, C. Cando-Dumancela, N. W. Fickling, S. D. Peddle, S. Ramesh, and M. F. Breed. 2024. Increasing aridity strengthens the core bacterial rhizosphere associations in the pan-palaeotropical C4 grass, Themeda triandra. Applied Soil Ecology 201: 105514. https://doi.org/10.1016/j.apsoil.2024.105514
Understanding belowground plant-microbial interactions is fundamental to predicting how plant species respond to climate change, particularly in global drylands. However, these interactions are poorly understood, especially for keystone grass species like the pan-palaeotropical Themeda triandra. Here, we used 16S rRNA amplicon sequencing to characterise microbiota in rhizospheres and bulk soils associated with T. triandra. We applied this method to eight native sites across a 3-fold aridity gradient (aridity index range = 0.318 to 0.903 = 87 % global aridity distribution) in southern Australia. By examining the relative contributions of climatic, edaphic, ecological, and host specific phenotypic traits, we identified the ecological drivers of core T. triandra-associated microbiota. We show that aridity had the strongest effect on shaping these core microbiotas, and report that a greater proportion of bacterial taxa that were from the core rhizosphere microbiomes were also differentially abundant in more arid T. triandra regions. These results suggest that T. triandra naturally growing in soils under more arid conditions have greater reliance on rhizosphere core taxa than plants growing under wetter conditions. Our study underscores the likely importance of targeted recruitment of bacteria into the rhizosphere by grassland keystone species, such as T. triandra, when growing in arid conditions. This bacterial soil recruitment is expected to become even more important under climate change.
Lozano, V., F. Marzialetti, A. T. R. Acosta, I. Arduini, G. Bacchetta, G. Domina, V. L. A. Laface, et al. 2024. Prioritizing management actions for invasive non-native plants through expert-based knowledge and species distribution models. Ecological Indicators 166: 112279. https://doi.org/10.1016/j.ecolind.2024.112279
Given the high number of non-native plants that are being introduced worldwide and the time required to process formal pest risk analyses, a framework for the prioritization of management actions is urgently required. We therefore propose a framework for a replicable and standardized prioritization for management actions (eradication, control and monitoring) of invasive non-native plants, combining expert knowledge, current and future climatic suitability estimated by species distribution models (SDMs), clustering and ordination techniques. Based on expert consultation and using Italy as case study, invasive non-native plant species were selected and three categories of management actions were identified: eradication, control and containment, and monitoring. Finally, two further classes of priorities were proposed for each of the management actions: “high” and “low” priority. Overall, SDMs highlighted a high and very high suitability for Continental and Mediterranean bioregions for most invasive plants. Cluster analysis revealed three distinct clusters with varying levels of suitability for the Italian bioregions. Cluster 1 exhibited a higher suitability across all Italian bioregions, whereas non-native plants grouped in Cluster 2 predominantly featured high suitability in Mediterranean areas. Finally, Cluster 3 showed the lowest suitability values. Two ordination analysis highlighted the variability in bioclimatic suitability for each non-native plant within each cluster, as well as their current distribution pattern. Lastly, a third ordination, integrating bioclimatic suitability and spatial patterns, has allowed the differentiation of management actions for each non-native plant at both national and bioregional scales. Specifically, seven non-native plants were earmarked for eradication action, six for monitoring action, while the remaining species were deemed suitable for control and containment. Our results and the methodology proposed meet the demand for replicable new early warning tools; that is to predict the location of new outbreaks, to establish priorities for eradication, control and containment, and to monitor invasive non-native species.