Science Enabled by Specimen Data

Fell, Osborne, O. G., Jones, M. D., Atkinson, S., Tarr, S., Keddie, S. H., & Algar, A. C. (2022). Biotic factors limit the invasion of the plague pathogen ( Yersinia pestis ) in novel geographical settings. Global Ecology and Biogeography. Portico. https://doi.org/10.1111/geb.13453 https://doi.org/10.1111/geb.13453

Aim: The distribution of Yersinia pestis, the pathogen that causes plague in humans, is reliant upon transmission between host species; however, the degree to which host species distributions dictate the distribution of Y. pestis, compared with limitations imposed by the environmental niche of Y. pe…

Martín, G., Erinjery, J., Gumbs, R., Somaweera, R., Ediriweera, D., Diggle, P. J., … Murray, K. A. (2021). Integrating snake distribution, abundance and expert‐derived behavioural traits predicts snakebite risk. Journal of Applied Ecology. doi:10.1111/1365-2664.14081 https://doi.org/10.1111/1365-2664.14081

Despite important implications for human health, distribution, abundance and behaviour of most medically relevant snakes remain poorly understood. Such data deficiencies hamper efforts to characterise the causal pathways of snakebite envenoming and to prioritise management options in the areas at gr…

Onditi, K. O., Li, X., Song, W., Li, Q., Musila, S., Mathenge, J., … Jiang, X. (2021). The management effectiveness of protected areas in Kenya. Biodiversity and Conservation. doi:10.1007/s10531-021-02276-7 https://doi.org/10.1007/s10531-021-02276-7

Merely designating new and/or expanding existing protected areas (PAs) does not guarantee the protection of critical ecosystems and species. The management of PAs must be effective to sustain meaningful conservational outcomes. We inferred the management effectiveness of PAs in Kenya based on the re…

McManamay, R. A., Vernon, C. R., & Jager, H. I. (2021). Global Biodiversity Implications of Alternative Electrification Strategies Under the Shared Socioeconomic Pathways. Biological Conservation, 109234. doi:10.1016/j.biocon.2021.109234 https://doi.org/10.1016/j.biocon.2021.109234

Addressing climate mitigation while meeting global electrification goals will require major transitions from fossil-fuel dependence to large-scale renewable energy deployment. However, renewables require significant land assets per unit energy and could come at high cost to ecosystems, creating pote…

Hughes, A. C., Orr, M. C., Ma, K., Costello, M. J., Waller, J., Provoost, P., … Qiao, H. (2021). Sampling biases shape our view of the natural world. Ecography. doi:10.1111/ecog.05926 https://doi.org/10.1111/ecog.05926

Spatial patterns of biodiversity are inextricably linked to their collection methods, yet no synthesis of bias patterns or their consequences exists. As such, views of organismal distribution and the ecosystems they make up may be incorrect, undermining countless ecological and evolutionary studies.…

González-Saucedo, Z. Y., González-Bernal, A., & Martínez-Meyer, E. (2021). Identifying priority areas for landscape connectivity for three large carnivores in northwestern Mexico and southwestern United States. Landscape Ecology. doi:10.1007/s10980-020-01185-4 https://doi.org/10.1007/s10980-020-01185-4

Context: Large carnivores are crucial to ecosystem functioning, as they enhance the biodiversity of the native communities in which they live. However, most large carnivores are threatened with extinction resulting from human persecution, habitat encroachment, and the loss of habitat connectivity. …

Farooq, H., Azevedo, J. A. R., Soares, A., Antonelli, A., & Faurby, S. (2020). Mapping Africa’s biodiversity: More of the same is just not good enough. Systematic Biology. doi:10.1093/sysbio/syaa090 https://doi.org/10.1093/sysbio/syaa090

Species distribution data are fundamental to the understanding of biodiversity patterns and processes. Yet, such data are strongly affected by sampling biases, mostly related to site accessibility. The understanding of these biases is therefore crucial in systematics, biogeography and conservation. …

Cooper, N., Bond, A. L., Davis, J. L., Portela Miguez, R., Tomsett, L., & Helgen, K. M. (2019). Sex biases in bird and mammal natural history collections. Proceedings of the Royal Society B: Biological Sciences, 286(1913), 20192025. doi:10.1098/rspb.2019.2025 https://doi.org/10.1098/rspb.2019.2025

Natural history specimens are widely used across ecology, evolutionary biology and conservation. Although biological sex may influence all of these areas, it is often overlooked in large-scale studies using museum specimens. If collections are biased towards one sex, studies may not be representativ…

Seaborn, T., Goldberg, C. S., & Crespi, E. J. (2020). Drivers of distributions and niches of North American cold‐adapted amphibians: evaluating both climate and land use. Ecological Applications. doi:10.1002/eap.2236 https://doi.org/10.1002/eap.2236

Species distribution estimates are often used to understand the niche of a species; however, these are often based solely on climatic predictors. When the influences of biotic factors are ignored, erroneous inferences about range and niche may be made. We aimed to integrate climate data with a uniqu…

Oegelund Nielsen, R., da Silva, R., Juergens, J., Staerk, J., Lindholm Sørensen, L., Jackson, J., … Conde, D. A. (2020). Standardized data to support conservation prioritization for sharks and batoids (Elasmobranchii). Data in Brief, 33, 106337. doi:10.1016/j.dib.2020.106337 https://doi.org/10.1016/j.dib.2020.106337

#N/A