Science Enabled by Specimen Data

McBride, E., I. C. Winder, and W. Wüster. 2023. What Bit the Ancient Egyptians? Niche Modelling to Identify the Snakes Described in the Brooklyn Medical Papyrus. Environmental Archaeology: 1–14. https://doi.org/10.1080/14614103.2023.2266631

The Brooklyn Papyrus is a medical treatise from Ancient Egypt (∼660–330 BCE) focusing on snakebite. Herpetologists have proposed identifications for many of the animals it describes, but some remain uncertain partly because the species no longer live in Egypt. This paper uses niche modelling to predict the palaeodistributions of ten of these snake species, to test some proposed identifications. Occurrence records and environmental variables were used to generate maximum entropy models for each species in the present day and the mid-Holocene (∼4,000 BCE). Our models performed very well, generating AUC scores ≥0.867 and successfully predicting species’ current ranges. Nine species’ predicted palaeodistributions included areas within Ancient Egypt, and four (Bitis arietans, Dolichophis jugularis, Macrovipera lebetina and Daboia mauritanica) were within modern Egypt. Daboia palaestinae was also predicted to occupy a patch of suitable habitat inside modern Egypt, but separate from the species’ core range. The tenth species, Causus rhombeatus, would have been present in kingdoms that were the Ancient Egyptians’ regular trading partners. We therefore conclude that all ten species modelled in this study could have bitten Ancient Egyptian people. Our study demonstrates the usefulness of niche modelling in informing debates about the species ancient cultures may have interacted with.

Groh, S. S., P. Upchurch, J. J. Day, and P. M. Barrett. 2023. The biogeographic history of neosuchian crocodiles and the impact of saltwater tolerance variability. Royal Society Open Science 10. https://doi.org/10.1098/rsos.230725

Extant neosuchian crocodiles are represented by only 24 taxa that are confined to the tropics and subtropics. However, at other intervals during their 200 Myr evolutionary history the clade reached considerably higher levels of species-richness, matched by more widespread distributions. Neosuchians have occupied numerous habitats and niches, ranging from dwarf riverine forms to large marine predators. Despite numerous previous studies, several unsolved questions remain with respect to their biogeographic history, including the geographical origins of major groups, e.g. Eusuchia and Neosuchia itself. We carried out the most comprehensive biogeographic analysis of Neosuchia to date, based on a multivariate K-means clustering approach followed by the application of two ancestral area estimation methods (BioGeoBEARS and Bayesian ancestral location estimation) applied to two recently published phylogenies. Our results place the origin of Neosuchia in northwestern Pangaea, with subsequent radiations into Gondwana. Eusuchia probably emerged in the European archipelago during the Late Jurassic/Early Cretaceous, followed by dispersals to the North American and Asian landmasses. We show that putative transoceanic dispersal events are statistically significantly less likely to happen in alligatoroids. This finding is consistent with the saltwater intolerant physiology of extant alligatoroids, bolstering inferences of such intolerance in their ancestral lineages.

Leão, C. F., M. S. Lima Ribeiro, K. Moraes, G. S. R. Gonçalves, and M. G. M. Lima. 2023. Climate change and carnivores: shifts in the distribution and effectiveness of protected areas in the Amazon. PeerJ 11: e15887. https://doi.org/10.7717/peerj.15887

Background Carnivore mammals are animals vulnerable to human interference, such as climate change and deforestation. Their distribution and persistence are affected by such impacts, mainly in tropical regions such as the Amazon. Due to the importance of carnivores in the maintenance and functioning of the ecosystem, they are extremely important animals for conservation. We evaluated the impact of climate change on the geographic distribution of carnivores in the Amazon using Species Distribution Models (SDMs). Do we seek to answer the following questions: (1) What is the effect of climate change on the distribution of carnivores in the Amazon? (2) Will carnivore species lose or gain representation within the Protected Areas (PAs) of the Amazon in the future? Methods We evaluated the distribution area of 16 species of carnivores mammals in the Amazon, based on two future climate scenarios (RCP 4.5 and RCP 8.5) for the year 2070. For the construction of the SDMs we used bioclimatic and vegetation cover variables (land type). Based on these models, we calculated the area loss and climate suitability of the species, as well as the effectiveness of the protected areas inserted in the Amazon. We estimated the effectiveness of PAs on the individual persistence of carnivores in the future, for this, we used the SDMs to perform the gap analysis. Finally, we analyze the effectiveness of PAs in protecting taxonomic richness in future scenarios. Results The SDMs showed satisfactory predictive performance, with Jaccard values above 0.85 and AUC above 0.91 for all species. In the present and for the future climate scenarios, we observe a reduction of potencial distribution in both future scenarios (RCP4.5 and RCP8.5), where five species will be negatively affected by climate change in the RCP 4.5 future scenario and eight in the RCP 8.5 scenario. The remaining species stay stable in terms of total area. All species in the study showed a loss of climatic suitability. Some species lost almost all climatic suitability in the RCP 8.5 scenario. According to the GAP analysis, all species are protected within the PAs both in the current scenario and in both future climate scenarios. From the null models, we found that in all climate scenarios, the PAs are not efficient in protecting species richness.

Higino, G. T., F. Banville, G. Dansereau, N. R. Forero Muñoz, F. Windsor, and T. Poisot. 2023. Mismatch between IUCN range maps and species interactions data illustrated using the Serengeti food web. PeerJ 11: e14620. https://doi.org/10.7717/peerj.14620

Background Range maps are a useful tool to describe the spatial distribution of species. However, they need to be used with caution, as they essentially represent a rough approximation of a species’ suitable habitats. When stacked together, the resulting communities in each grid cell may not always be realistic, especially when species interactions are taken into account. Here we show the extent of the mismatch between range maps, provided by the International Union for Conservation of Nature (IUCN), and species interactions data. More precisely, we show that local networks built from those stacked range maps often yield unrealistic communities, where species of higher trophic levels are completely disconnected from primary producers. Methodology We used the well-described Serengeti food web of mammals and plants as our case study, and identify areas of data mismatch within predators’ range maps by taking into account food web structure. We then used occurrence data from the Global Biodiversity Information Facility (GBIF) to investigate where data is most lacking. Results We found that most predator ranges comprised large areas without any overlapping distribution of their prey. However, many of these areas contained GBIF occurrences of the predator. Conclusions Our results suggest that the mismatch between both data sources could be due either to the lack of information about ecological interactions or the geographical occurrence of prey. We finally discuss general guidelines to help identify defective data among distributions and interactions data, and we recommend this method as a valuable way to assess whether the occurrence data that are being used, even if incomplete, are ecologically accurate.

Kagnew, B., A. Assefa, and A. Degu. 2022. Modeling the Impact of Climate Change on Sustainable Production of Two Legumes Important Economically and for Food Security: Mungbeans and Cowpeas in Ethiopia. Sustainability 15: 600. https://doi.org/10.3390/su15010600

Climate change is one of the most serious threats to global crops production at present and it will continue to be the largest threat in the future worldwide. Knowing how climate change affects crop productivity might help sustainability and crop improvement efforts. Under existing and projected climate change scenarios (2050s and 2070s in Ethiopia), the effect of global warming on the distribution of V. radiata and V. unguiculata was investigated. MaxEnt models were used to predict the current and future distribution pattern changes of these crops in Ethiopia using different climate change scenarios (i.e., lowest (RCP 2.6), moderate (RCP 4.5), and extreme (RCP 8.5)) for the years 2050s and 2070s. The study includes 81 and 68 occurrence points for V. radiata and V. unguiculata, respectively, along with 22 environmental variables. The suitability maps indicate that the Beneshangul Gumuz, Oromia, Amhara, SNNPR, and Tigray regions are the major Ethiopian regions with the potential to produce V. radiata, while Amhara, Gambella, Oromia, SNNPR, and Tigray are suitable for producing V. unguiculata. The model prediction for V. radiata habitat ranges distribution in Ethiopia indicated that 1.69%, 4.27%, 11.25% and 82.79% are estimated to be highly suitable, moderately suitable, less suitable, and unsuitable, respectively. On the other hand, the distribution of V. unguiculata is predicted to have 1.27%, 3.07%, 5.22%, and 90.44% habitat ranges that are highly suitable, moderately suitable, less suitable, and unsuitable, respectively, under the current climate change scenario by the year (2050s and 2070s) in Ethiopia. Among the environmental variables, precipitation of the wettest quarter (Bio16), solar radiation index (SRI), temperature seasonality (Bio4), and precipitation seasonality (Bio15) are discovered to be the most effective factors for defining habitat suitability for V. radiata, while precipitation of the wettest quarter (Bio16), temperature annual range (Bio7) and precipitation of the driest quarter (Bio17) found to be better habitat suitability indicator for V. unguiculata in Ethiopia. The result indicates that these variables were more relevant in predicting suitable habitat for these crops in Ethiopia. A future projection predicts that the suitable distribution region will become increasingly fragmented. In general, the study provides a scientific basis of suitable agro-ecological habitat for V. radiata and V. unguiculata for long-term crop management and production improvement in Ethiopia. Therefore, projections of current and future climate change impacts on such crops are vital to reduce the risk of crop failure and to identify the potential productive areas in the country.

Moreno, I., J. M. W. Gippet, L. Fumagalli, and P. J. Stephenson. 2022. Factors affecting the availability of data on East African wildlife: the monitoring needs of conservationists are not being met. Biodiversity and Conservation. https://doi.org/10.1007/s10531-022-02497-4

Understanding the status and abundance of species is essential for effective conservation decision-making. However, the availability of species data varies across space, taxonomic groups and data types. A case study was therefore conducted in a high biodiversity region—East Africa—to evaluate data biases, the factors influencing data availability, and the consequences for conservation. In each of the eleven target countries, priority animal species were identified as threatened species that are protected by national governments, international conventions or conservation NGOs. We assessed data gaps and biases in the IUCN Red List of Threatened Species, the Global Biodiversity Information Facility and the Living Planet Index. A survey of practitioners and decision makers was conducted to confirm and assess consequences of these biases on biodiversity conservation efforts. Our results showed data on species occurrence and population trends were available for a significantly higher proportion of vertebrates than invertebrates. We observed a geographical bias, with higher tourism income countries having more priority species and more species with data than lower tourism income countries. Conservationists surveyed felt that, of the 40 types of data investigated, those data that are most important to conservation projects are the most difficult to access. The main challenges to data accessibility are excessive expense, technological challenges, and a lack of resources to process and analyse data. With this information, practitioners and decision makers can prioritise how and where to fill gaps to improve data availability and use, and ensure biodiversity monitoring is improved and conservation impacts enhanced.

Bai, D., X. Wan, L. Zhang, A. Campos-Arceiz, F. Wei, and Z. Zhang. 2022. The recent Asian elephant range expansion in Yunnan, China, is associated with climate change and enforced protection efforts in human-dominated landscapes. Frontiers in Ecology and Evolution 10. https://doi.org/10.3389/fevo.2022.889077

Recently, the northward movement of Asian elephants (Elephas maximus) in Yunnan, China, has attracted international attention. Climate change or human disturbances have been proposed to be the key drivers, but these hypotheses have not been rigorously tested. In this study, we quantified the relationship between climate change and human impacts on the recent range expansion of Asian elephants in southwest China. We found that the first observation probability of this species in a new place during 1959–2021 had a significant and positive association with change in air temperature and human density, resulting in a movement toward a high-latitude region with a warmer climate and higher human density; however, its association with precipitation was scale-dependent in time: positive or negative during the past 10 or 5 years, respectively. Under the enforced protection policy, human-dominated areas became preferred habitats for elephants. Our results indicate that climate change and enforced protection efforts in human-dominated landscapes in the last few decades are significant drivers of the recent range expansion of Asian elephants in Yunnan, China. It is necessary to expand the current protected areas or habitat corridors toward the north or set up new reserves in the north and set up barriers between human settlements and elephant habitats to facilitate elephant movements and minimize human-elephant conflicts under accelerated global change.

Cunze, S., and S. Klimpel. 2022. From the Balkan towards Western Europe: Range expansion of the golden jackal ( Canis aureus )—A climatic niche modeling approach. Ecology and Evolution 12. https://doi.org/10.1002/ece3.9141

In recent decades, a rapid range expansion of the golden jackal (Canis aureus) towards Northern and Western Europe has been observed. The golden jackal is a medium‐sized canid, with a broad and flexible diet. Almost 200 different parasite species have been reported worldwide from C. aureus, including many parasites that are shared with dogs and cats and parasite species of public health concern. As parasites may follow the range shifts of their host, the range expansion of the golden jackal could be accompanied by changes in the parasite fauna in the new ecosystems. In the new distribution area, the golden jackal could affect ecosystem equilibrium, e.g., through changed competition situations or predation pressure. In a niche modeling approach, we project the future climatic habitat suitability of the golden jackal in Europe in the context of whether climatic changes promote range expansion. We use an ensemble forecast based on six presence‐absence algorithms to estimate the climatic suitability of C. aureus for different time periods up to the year 2100 considering different IPCC scenarios on future development. As predictor variables, we used six bioclimatic variables provided by worldclim. Our results clearly indicate that areas with climatic conditions analogous to those of the current core distribution area of the golden jackal in Europe will strongly expand towards the north and the west in future decades. Thus, the observed range expansion may be favored by climate change. The occurrence of stable populations can be expected in Central Europe. With regard to biodiversity and public health concerns, the population and range dynamics of the golden jackal should be surveyed. Correlative niche models provide a useful and frequently applied tool for this purpose. The results can help to make monitoring more efficient by identifying areas with suitable habitat and thus a higher probability of occurrence.

Monroy-Gamboa, A. G. 2022. Differences between Northern and Southern Female Coyotes. Western North American Naturalist 82. https://doi.org/10.3398/064.082.0119

The coyote (Canis latrans) has a wide distribution range, spanning boreal forests from the north of the continent to tropical environments in Central America, showing great adaptation and plasticity. Bergmann's rule states that individuals inhabiting colder climates are larger than those in warmer climates. It is suggested that in carnivore species, litter size is influenced by allometric constraints such as maternal body size. The aim of this study is to analyze the relations using correlation between female coyote mass, latitude, and litter size. Using data compiled from the literature, I carried out statistical analyses to correlate female body size, litter size, and latitude for coyotes across their distribution range. The results indicated a soft significant correlation between female body size and latitude, confirming Bergmann's rule. However, no significant correlation was found between litter size and latitude or between litter size and female body size; litter size in coyotes remains roughly uniform across their distribution range.

Barends, J. M., and B. Maritz. 2022. Dietary Specialization and Habitat Shifts in a Clade of Afro-Asian Colubrid Snakes (Colubridae: Colubrinae). Ichthyology & Herpetology 110. https://doi.org/10.1643/h2021058

Speciation through niche divergence often occurs as lineages of organisms colonize and adapt to new environments with novel ecological opportunities that facilitate the evolution of ecologically different phenotypes. In snakes, adaptive diversification may be driven by the evolution of traits relating to changes in their diets. Accordingly, habitatmediated differences in prey available to ancestral snakes as they colonized and occupied novel dynamic landscapes are likely to have been a strong selective agent behind the divergence and radiation of snakes across the globe. Using an ancestral reconstruction approach that considers the multivariate nature of ecological phenotypes while accounting for sampling variation between taxa, we explored how diet and macro-habitat use coevolved across a phylogeny of 67 species of Afro-Asian colubrine snakes. Our results show that the most recent common ancestor of this clade was likely a dietary generalist that occupied tropical forests in Asia. Deviations from this generalist diet to a variety of specialist diets each dominated by the utilization of single prey types repeatedly occurred as ancestral colubrines shifted from tropical forests to savanna and grassland habitats across Africa. We additionally found that dietary specialist species were on average smaller in maximum length than dietary generalists, congruent with established predator-size, preydiversity dynamics in snakes. We speculate that adaptive divergence in ancestral colubrines arose as a result of a selective regime that favored diets comprised of terrestrial prey, and that partitioning of different prey types led to the various forms of dietary specialization evident in these lineages today. Our findings provide new insights into the ecological correlates associated with the evolution of diet in snakes, thereby furthering our understanding of the driving forces behind patterns of snake diversification.