Science Enabled by Specimen Data
Tytar, V., O. Nekrasova, O. Marushchak, M. Pupins, A. Skute, A. Čeirāns, and I. Kozynenko. 2022. The Spread of the Invasive Locust Digitate Leafminer Parectopa robiniella Clemens, 1863 (Lepidoptera: Gracillariidae) in Europe, with Special Reference to Ukraine. Diversity 14: 605. https://doi.org/10.3390/d14080605
The spread and outbreaks of phytophagous pests are often associated with global warming. In addition to economic interest, these species may be of interest in terms of biological indication of climate changes. In this context, we considered the locust digitate leafminer Parectopa robiniella Clemens, 1863 (Lepidoptera: Gracillariidae). This phytophage was first discovered in Europe in 1970 near Milano in Italy. Since then, it has been spreading across the continent. In Ukraine, it was recorded for the first time in 2003. In 2020–2021, we found areas of massive leaf damage caused by the black locust (Robinia pseudoacacia) in locations on Trukhaniv Island in Kyiv and some places in the Kyiv administrative region. Using 1041 georeferenced records of P. robiniella across Europe and a Bayesian additive regression trees algorithm (BART), we modeled the distribution of the moth. Predictors of current climate (WorldClim v.2, CliMond v.1.2 and ENVIREM) and a black locust habitat suitability raster were employed. Sets of SDMs built for P. robiniella with and without the habitat suitability raster for the host tree performed equally well. Amongst the factors that determine the niche of the locust digitate leafminer, most important are temperature-related conditions assumed to facilitate the spread and naturalization of the pest. In Ukraine, the appearance of the moth has coincided with increasing mean annual temperatures. Particularly favorable for the species are areas in the west and south-west of the country, and Transcarpathia. In the near future, the moth could reach locations in Nordic countries, Estonia, the British Isles, Black Sea coastal areas in Turkey, further into Russia, etc.
Ramirez-Villegas, J., C. K. Khoury, H. A. Achicanoy, M. V. Diaz, A. C. Mendez, C. C. Sosa, Z. Kehel, et al. 2022. State of ex situ conservation of landrace groups of 25 major crops. Nature Plants 8: 491–499. https://doi.org/10.1038/s41477-022-01144-8
Crop landraces have unique local agroecological and societal functions and offer important genetic resources for plant breeding. Recognition of the value of landrace diversity and concern about its erosion on farms have led to sustained efforts to establish ex situ collections worldwide. The degree to which these efforts have succeeded in conserving landraces has not been comprehensively assessed. Here we modelled the potential distributions of eco-geographically distinguishable groups of landraces of 25 cereal, pulse and starchy root/tuber/fruit crops within their geographic regions of diversity. We then analysed the extent to which these landrace groups are represented in genebank collections, using geographic and ecological coverage metrics as a proxy for genetic diversity. We find that ex situ conservation of landrace groups is currently moderately comprehensive on average, with substantial variation among crops; a mean of 63% ± 12.6% of distributions is currently represented in genebanks. Breadfruit, bananas and plantains, lentils, common beans, chickpeas, barley and bread wheat landrace groups are among the most fully represented, whereas the largest conservation gaps persist for pearl millet, yams, finger millet, groundnut, potatoes and peas. Geographic regions prioritized for further collection of landrace groups for ex situ conservation include South Asia, the Mediterranean and West Asia, Mesoamerica, sub-Saharan Africa, the Andean mountains of South America and Central to East Asia. With further progress to fill these gaps, a high degree of representation of landrace group diversity in genebanks is feasible globally, thus fulfilling international targets for their ex situ conservation. By analysing the state of representation of traditional varieties of 25 major crops in ex situ repositories, this study demonstrates conservation progress made over more than a half-century and identifies the gaps remaining to be filled.
Bywater‐Reyes, S., R. M. Diehl, A. C. Wilcox, J. C. Stella, and L. Kui. 2022. A Green New Balance: Interactions among riparian vegetation plant traits and morphodynamics in alluvial rivers. Earth Surface Processes and Landforms 47: 2410–2436. https://doi.org/10.1002/esp.5385
The strength of interactions between plants and river processes is mediated by plant traits and fluvial conditions, including above‐ground biomass, stem density and flexibility, channel and bed material properties, and flow and sediment regimes. In many rivers, concurrent changes in 1) the composition of riparian vegetation communities as a result of exotic species invasion and 2) shifts in hydrology have altered physical and ecological conditions in a manner that has been mediated by feedbacks between vegetation and morphodynamic processes. We review how Tamarix, which has invaded many U.S. Southwest waterways, and Populus species, woody pioneer trees that are native to the region, differentially affect hydraulics, sediment transport, and river morphology. We draw on flume, field, and modeling approaches spanning the individual seedling to river‐corridor scales. In a flume study, we found differences in the crown morphology, stem density, and flexibility of Tamarix compared to Populus influenced near‐bed flow velocities in a manner that favored aggradation associated with Tamarix. Similarly, at the patch and corridor scales, observations confirmed increased aggradation with increased vegetation density. Furthermore, long‐term channel adjustments were different for Tamarix‐ versus Populus‐dominated reaches, with faster and greater geomorphic adjustments for Tamarix. Collectively, our studies show how plant‐trait differences between Tamarix and Populus, from individual seedlings to larger spatial and temporal scales, influence the co‐adjustment of rivers and riparian plant communities. These findings provide a basis for predicting changes in alluvial riverine systems which we conceptualize as a Green New Balance model that considers how channels may adjust to changes in plant traits and community structure in additional to alterations in flow and sediment supply. We offer suggestions regarding how the Green New Balance can be used in management and invasive species management.
Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885
The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…
Grebennikov, K. 2021. Ecological niche modeling to assessment of potential distribution of Neodiprion abietis (Harris, 1841) (Insecta, Hymenoptera, Diprionidae) in Eurasia. International Journal of Agricultural Sciences and Technology 1: 1–7. https://doi.org/10.51483/ijagst.1.1.2021.1-7
In the article first assesses the potential distribution in Eurasia of Neodiprion abietis (Harris, 1841) first time assessed. The species id a widely distributed in North America fir and spruce defoliator, intercepted in 2016 in the Netherlands. Analysis of the literature data on the known distribut…
Klisz, M., R. Puchałka, M. Netsvetov, Y. Prokopuk, M. Vítková, J. Sádlo, R. Matisons, et al. 2021. Variability in climate-growth reaction of Robinia pseudoacacia in Eastern Europe indicates potential for acclimatisation to future climate. Forest Ecology and Management 492: 119194. https://doi.org/10.1016/j.foreco.2021.119194
As a consequence of native tree species decline and distribution range contraction in Europe, acclimation of the non-native tree species at the edge of their distribution is gaining importance. Although non-native tree species may provide sustainable ecosystem services, as a potentially invasive spe…
DeLaMater, D. S., J. J. Couture, J. R. Puzey, and H. J. Dalgleish. 2021. Range‐wide variations in common milkweed traits and their effect on monarch larvae. American Journal of Botany 108: 388–401. https://doi.org/10.1002/ajb2.1630
Premise: Leaf economic spectrum (LES) theory has historically been employed to inform vegetation models of ecosystem processes, but largely neglects intraspecific variation and biotic interactions. We attempt to integrate across environment–plant trait–herbivore interactions within a species at a ra…
Follak, S., L. Bakacsy, F. Essl, L. Hochfellner, K. Lapin, M. Schwarz, B. Tokarska-Guzik, and D. Wołkowycki. 2021. Monograph of invasive plants in Europe N°6: Asclepias syriaca L. Botany Letters 168: 422–451. https://doi.org/10.1080/23818107.2021.1886984
This work synthesizes all aspects of Asclepias syriaca L. (Apocynaceae) including the taxonomy, distribution, history of introduction and spread, ecology, biology, uses and benefits, impacts on biodiversity and agriculture, legislation, and management. Asclepias syriaca is a perennial broad-leaved s…
Puchałka, R., M. K. Dyderski, M. Vítková, J. Sádlo, M. Klisz, M. Netsvetov, Y. Prokopuk, et al. 2021. Black locust ( Robinia pseudoacacia L.) range contraction and expansion in Europe under changing climate. Global Change Biology 27: 1587–1600. https://doi.org/10.1111/gcb.15486
Robinia pseudoacacia is one of the most frequent non‐native species in Europe. It is a fast‐growing tree of high economic and cultural importance. On the other hand, it is an invasive species, causing changes in soil chemistry and light regime, and consequently altering the plant communities. Previo…
Brendel, M. R., F. M. Schurr, and C. S. Sheppard. 2020. Inter‐ and intraspecific selection in alien plants: How population growth, functional traits and climate responses change with residence time A. Ordonez [ed.],. Global Ecology and Biogeography 30: 429–442. https://doi.org/10.1111/geb.13228
Aim: When alien species are introduced to new ranges, climate or trait mismatches may initially constrain their population growth. However, inter‐ and intraspecific selection in the new environment should cause population growth rates to increase with residence time. Using a species‐for‐time approac…