Science Enabled by Specimen Data

Brendel, M. R., Schurr, F. M., & Sheppard, C. S. (2020). Inter‐ and intraspecific selection in alien plants: How population growth, functional traits and climate responses change with residence time. Global Ecology and Biogeography. doi:10.1111/geb.13228 https://doi.org/10.1111/geb.13228

Aim: When alien species are introduced to new ranges, climate or trait mismatches may initially constrain their population growth. However, inter‐ and intraspecific selection in the new environment should cause population growth rates to increase with residence time. Using a species‐for‐time approac…

Ebersbach, J., Tkach, N., Röser, M., & Favre, A. (2020). The Role of Hybridisation in the Making of the Species-Rich Arctic-Alpine Genus Saxifraga (Saxifragaceae). Diversity, 12(11), 440. doi:10.3390/d12110440 https://doi.org/10.3390/d12110440

Evolutionary processes fuelling rapid species diversification are not yet fully understood, although their major contribution to overall patterns of plant biodiversity is well established. Hybridisation is among the least understood of these processes, despite its multifaceted role in speciation pro…

Li, M., He, J., Zhao, Z., Lyu, R., Yao, M., Cheng, J., & Xie, L. (2020). Predictive modelling of the distribution of Clematis sect. Fruticella s. str. under climate change reveals a range expansion during the Last Glacial Maximum. PeerJ, 8, e8729. doi:10.7717/peerj.8729 https://doi.org/10.7717/peerj.8729

Background The knowledge of distributional dynamics of living organisms is a prerequisite for protecting biodiversity and for the sustainable use of biotic resources. Clematis sect. Fruticella s. str. is a small group of shrubby, yellow-flowered species distributed mainly in arid and semi-arid areas…