Science Enabled by Specimen Data

Olivares-Pinto, U., J. C. S. Lopes, C. Ruiz-Aguilar, Y. Oki, and G. W. Fernandes. 2025. Adapting to a shifting planet: The future of Drosera species amidst global challenges and conservation imperatives. Anthropocene 49: 100466. https://doi.org/10.1016/j.ancene.2025.100466

This study assesses the potential effects of climate change on the distribution of the Drosera genus, which is a carnivorous plant group widely distributed in South America. The Drosera species act as adequate biological indicators, with their fitness performance reflecting the health of ecosystems. Through the application of species distribution models and the analysis of bioclimatic variables, the adaptability of 39 Drosera species to evolving climatic conditions was assessed, revealing their capacity to thrive in diverse habitats, from nutrient-deficient soils to regions with high atmospheric CO2 concentrations. While many species show adaptability, environmental forecasts using two General Circulation Models indicate a decrease in favorable habitats by 2050 and 2070. It is expected that about 71.79 % of species will encounter shrinking habitat suitability, while 28.21 % may see an increase in habitat suitability. This anticipated habitat loss underscores the critical need for proactive conservation measures, including habitat preservation, ecological restoration, assisted migration, and genetic conservation efforts, to counteract the adverse effects of climate change. Additionally, the study highlights the importance of refining species distribution models and deepening our understanding of the ecological dynamics of Drosera species in response to environmental changes. By offering insights into the challenges and opportunities for conserving Drosera species in a changing climate, this work lays a solid groundwork for future ecological research and conservation initiatives. It calls for an integrated approach that combines scientific inquiry with strategic conservation actions to ensure the survival of these unique plant group and ecological integrity during global environmental shifts.

Liu, H., X. Feng, Y. Zhao, G. Lv, C. Zhang, Aruhan, T.-A. Damba, et al. 2024. Pharmacophylogenetic relationships of genus Dracocephalum and its related genera based on multifaceted analysis. Frontiers in Pharmacology 15. https://doi.org/10.3389/fphar.2024.1449426

The Lamiaceae genus Dracocephalum, with over 30 species, is believed to have considerable medicinal properties and is widely used in Eurasian ethnomedicine. Numerous studies have researched on the geographical distribution, metabolite identification, and bioactivity of Dracocephalum species, especially amidst debates concerning the taxonomy of its closely related genera Hyssopus and Lallemantia. These discussions present an opportunity for pharmacophylogenetic studies of these medicinal plants. In this review, we collated extensive literature and data to present a multifaceted view of the geographical distribution, phylogenetics, phytometabolites and chemodiversity, ethnopharmacological uses, and pharmacological activities of Dracocephalum, Hyssopus, and Lallemantia. We found that these genera were concentrated in Europe, with species adapted to various climatic zones. These genera shared close phylogenetic relationships, with Dracocephalum and Hyssopus displaying intertwined patterns in the phylogenetic tree. Our review assessed more than 900 metabolites from these three genera, with terpenoids and flavonoids being the most abundant. Researchers have recently identified novel metabolites within Dracocephalum, expanding our understanding of its chemical constituents. Ethnopharmacologically, these genera have been traditionally used for treating respiratory, liver and gall bladder diseases. Extracts and metabolites from these genera exhibit a range of pharmacological activities such as hepatoprotective, anti-inflammation, antimicrobial action, anti-hyperlipidaemia, and anti-tumour properties. By integrating phylogenetic analyses with network pharmacology, we explored the intrinsic links between metabolite profiles, traditional efficacy, and modern pharmacology of Dracocephalum and its related genera. This study contributes to the discovery of potential medicinal value from closely related species of Dracocephalum and aids in the development and sustainable use of medicinal plant resources.

Uehira, K., and Y. Shimono. 2024. Evaluation of climate conditions and ecological traits that limit the distribution expansion of alien Lolium rigidum in Japan. NeoBiota 96: 89–104. https://doi.org/10.3897/neobiota.96.122752

AbstractInvasive alien plants cause severe global problems; therefore, determining the factors that lead to the success or failure of invasion is a critical question in the field of invasion ecology. In this study, we aimed to determine the factors underlying differences in the distribution range of alien plants in Japan by investigating why Loliummultiflorum thrives in a wide range of habitats while L.rigidum is mainly distributed on sandy beaches. We initially evaluated environmental niche suitability through species distribution modelling and subsequently examined whether species traits influence the differences in range expansion between the two species. We used MaxEnt modelling to identify potential environmental niches for both species. The analysis revealed that L.rigidum was considerably less suited to the Japanese climate compared to L.multiflorum, with high summer precipitation in Japan identified as one of the climatic factors limiting the distribution of L.rigidum. Given that these winter annual plants remain dormant as seeds during summer, in subsequent experiments, we buried seeds in paddy field soil and sandy beach sand during summer and evaluated their survival rate in autumn. The survival rate of L.rigidum seeds was significantly lower than that of L.multiflorum, particularly in paddy soil. Factors contributing to seed mortality may include the decay or early germination of L.rigidum seeds under Japan’s high rainfall conditions. This study emphasises the importance of considering local environmental factors alongside climate niche modelling in the risk assessment of invasive species. Moreover, the integration of species distribution modelling for large-scale evaluations and manipulation experiments for fine-scale assessments proved effective in identifying climatic conditions and species traits influencing the success or failure of alien species invasion.

Bradshaw, C. D., D. L. Hemming, T. Mona, W. Thurston, M. K. Seier, D. P. Hodson, J. W. Smith, et al. 2024. Transmission pathways for the stem rust pathogen into Central and East Asia and the role of the alternate host, barberry. Environmental Research Letters 19: 114097. https://doi.org/10.1088/1748-9326/ad7ee3

Abstract After many decades of effective control of stem rust caused by the Puccinia graminis f.sp. tritici, (hereafter Pgt) the reported emergence of race TTKSK/Ug99 of Pgt in Uganda reignited concerns about epidemics worldwide because ∼90% of world wheat cultivars had no resistance to the new race. Since it was initially detected in Uganda in 1998, Ug99 variants have now been identified in thirteen countries in Africa and the Middle East. Stem rust has been a major problem in the past, and concern is increasing about the risk of return to Central and East Asia. Whilst control programs in North America and Europe relied on the use of resistant cultivars in combination with eradication of barberry (Berberis spp.), the alternate host required for the stem rust pathogen to complete its full lifecycle, the focus in East Asia was principally on the use of resistant wheat cultivars. Here, we investigate potential airborne transmission pathways for stem rust outbreaks in the Middle East to reach East Asia using an integrated modelling framework combining estimates of fungal spore deposition from an atmospheric dispersion model, environmental suitability for spore germination, and crop calendar information. We consider the role of mountain ranges in restricting transmission pathways, and we incorporate a representation of a generic barberry species into the lifecycle. We find viable transmission pathways to East Asia from the Middle East to the north via Central Asia and to the south via South Asia and that an initial infection in the Middle East could persist in East Asia for up to three years due to the presence of the alternate host. Our results indicate the need for further assessment of barberry species distributions in East Asia and appropriate methods for targeted surveillance and mitigation strategies should stem rust incidence increase in the Middle East region.

Hämälä, T., C. Moore, L. Cowan, M. Carlile, D. Gopaulchan, M. K. Brandrud, S. Birkeland, et al. 2024. Impact of whole-genome duplications on structural variant evolution in Cochlearia. Nature Communications 15. https://doi.org/10.1038/s41467-024-49679-y

Polyploidy, the result of whole-genome duplication (WGD), is a major driver of eukaryote evolution. Yet WGDs are hugely disruptive mutations, and we still lack a clear understanding of their fitness consequences. Here, we study whether WGDs result in greater diversity of genomic structural variants (SVs) and how they influence evolutionary dynamics in a plant genus, Cochlearia (Brassicaceae). By using long-read sequencing and a graph-based pangenome, we find both negative and positive interactions between WGDs and SVs. Masking of recessive mutations due to WGDs leads to a progressive accumulation of deleterious SVs across four ploidal levels (from diploids to octoploids), likely reducing the adaptive potential of polyploid populations. However, we also discover putative benefits arising from SV accumulation, as more ploidy-specific SVs harbor signals of local adaptation in polyploids than in diploids. Together, our results suggest that SVs play diverse and contrasting roles in the evolutionary trajectories of young polyploids. Cochlearia is an evolutionarily dynamic genus with different base chromosome numbers and ploidal levels. Here, the authors construct a graph-based pangenome for Cochlearia and reveal that whole-genome duplication associated with greater diversity of genomic structural variation and their possible function in adaptation.

Weiss, R. M., F. Zanetti, B. Alberghini, D. Puttick, M. A. Vankosky, A. Monti, and C. Eynck. 2024. Bioclimatic analysis of potential worldwide production of spring‐type camelina [Camelina sativa (L.) Crantz] seeded in the spring. GCB Bioenergy 16. https://doi.org/10.1111/gcbb.13126

Camelina [Camelina sativa (L.) Crantz] is a Brassicaceae oilseed that is gaining interest worldwide as low‐maintenance crop for diverse biobased applications. One of the most important factors determining its productivity is climate. We conducted a bioclimate analysis in order to analyze the relationship between climatic factors and the productivity of spring‐type camelina seeded in the spring, and to identify regions of the world with potential for camelina in this scenario. Using the modelling tool CLIMEX, a bioclimatic model was developed for spring‐seeded spring‐type camelina to match distribution, reported seed yields and phenology records in North America. Distribution, yield, and phenology data from outside of North America were used as independent datasets for model validation and demonstrated that model projections agreed with published distribution records, reported spring‐seeded camelina yields, and closely predicted crop phenology in Europe, South America, and Asia. Sensitivity analysis, used to quantify the response of camelina to changes in precipitation and temperature, indicated that crop performance was more sensitive to moisture than temperature index parameters, suggesting that the yield potential of spring‐seeded camelina may be more strongly impacted by water‐limited conditions than by high temperatures. Incremental climate scenarios also revealed that spring‐seeded camelina production will exhibit yield shifts at the continental scale as temperature and precipitation deviate from current conditions. Yield data were compared with indices of climatic suitability to provide estimates of potential worldwide camelina productivity. This information was used to identify new areas where spring‐seeded camelina could be grown and areas that may permit expanded production, including eastern Europe, China, eastern Russia, Australia and New Zealand. Our model is the first to have taken a systematic approach to determine suitable regions for potential worldwide production of spring‐seeded camelina.

Zhang, H., W. Guo, and W. Wang. 2023. The dimensionality reductions of environmental variables have a significant effect on the performance of species distribution models. Ecology and Evolution 13. https://doi.org/10.1002/ece3.10747

How to effectively obtain species‐related low‐dimensional data from massive environmental variables has become an urgent problem for species distribution models (SDMs). In this study, we will explore whether dimensionality reduction on environmental variables can improve the predictive performance of SDMs. We first used two linear (i.e., principal component analysis (PCA) and independent components analysis) and two nonlinear (i.e., kernel principal component analysis (KPCA) and uniform manifold approximation and projection) dimensionality reduction techniques (DRTs) to reduce the dimensionality of high‐dimensional environmental data. Then, we established five SDMs based on the environmental variables of dimensionality reduction for 23 real plant species and nine virtual species, and compared the predictive performance of those with the SDMs based on the selected environmental variables through Pearson's correlation coefficient (PCC). In addition, we studied the effects of DRTs, model complexity, and sample size on the predictive performance of SDMs. The predictive performance of SDMs under DRTs other than KPCA is better than using PCC. And the predictive performance of SDMs using linear DRTs is better than using nonlinear DRTs. In addition, using DRTs to deal with environmental variables has no less impact on the predictive performance of SDMs than model complexity and sample size. When the model complexity is at the complex level, PCA can improve the predictive performance of SDMs the most by 2.55% compared with PCC. At the middle level of sample size, the PCA improved the predictive performance of SDMs by 2.68% compared with the PCC. Our study demonstrates that DRTs have a significant effect on the predictive performance of SDMs. Specifically, linear DRTs, especially PCA, are more effective at improving model predictive performance under relatively complex model complexity or large sample sizes.

Borges, C. E., R. Von dos Santos Veloso, C. A. da Conceição, D. S. Mendes, N. Y. Ramirez-Cabral, F. Shabani, M. Shafapourtehrany, et al. 2023. Forecasting Brassica napus production under climate change with a mechanistic species distribution model. Scientific Reports 13. https://doi.org/10.1038/s41598-023-38910-3

Brassica napus , a versatile crop with significant socioeconomic importance, serves as a valuable source of nutrition for humans and animals while also being utilized in biodiesel production. The expansion potential of B. napus is profoundly influenced by climatic variations, yet there remains a scarcity of studies investigating the correlation between climatic factors and its distribution. This research employs CLIMEX to identify the current and future ecological niches of B. napus under the RCP 8.5 emission scenario, utilizing the Access 1.0 and CNRM-CM5 models for the time frame of 2040–2059. Additionally, a sensitivity analysis of parameters was conducted to determine the primary climatic factors affecting B. napus distribution and model responsiveness. The simulated outcomes demonstrate a satisfactory alignment with the known current distribution of B. napus , with 98% of occurrence records classified as having medium to high climatic suitability. However, the species displays high sensitivity to thermal parameters, thereby suggesting that temperature increases could trigger shifts in suitable and unsuitable areas for B. napus , impacting regions such as Canada, China, Brazil, and the United States.

Cousins-Westerberg, R., N. Dakin, L. Schat, G. Kadereit, and A. M. Humphreys. 2023. Evolution of cold tolerance in the highly stress-tolerant samphires and relatives (Salicornieae: Amaranthaceae). Botanical Journal of the Linnean Society. https://doi.org/10.1093/botlinnean/boad009

Low temperature constitutes one of the main barriers to plant distributions, confining many clades to their ancestrally tropical biome. However, recent evidence suggests that transitions from tropical to temperate biomes may be more frequent than previously thought. Here, we study the evolution of cold and frost tolerance in the globally distributed and highly stress-tolerant Salicornieae (Salicornioideae, Amaranthaceae s.l.). We first generate a phylogenetic tree comprising almost all known species (85-90%), using newly generated (n = 106) and published nuclear-ribosomal and plastid sequences. Next, we use geographical occurrence data to document in which clades and geographical regions cold-tolerant species occur and reconstruct how cold tolerance evolved. Finally, we test for correlated evolution between frost tolerance and the annual life form. We find that frost tolerance has evolved independently in up to four Northern Hemisphere lineages but that annuals are no more likely to evolve frost tolerance than perennials, indicating the presence of different strategies for adapting to cold environments. Our findings add to mounting evidence for multiple independent out-of-the-tropics transitions among close relatives of flowering plants and raise new questions about the ecological and physiological mechanism(s) of adaptation to low temperatures in Salicornieae.

Clemente, K. J. E., and M. S. Thomsen. 2023. High temperature frequently increases facilitation between aquatic foundation species: a global meta‐analysis of interaction experiments between angiosperms, seaweeds, and bivalves. Journal of Ecology. https://doi.org/10.1111/1365-2745.14101

Many studies have quantified ecological impacts of individual foundation species (FS). However, emerging data suggest that FS often co‐occur, potentially inhibiting or facilitating one another, thereby causing indirect, cascading effects on surrounding communities. Furthermore, global warming is accelerating, but little is known about how interactions between co‐occurring FS vary with temperature.Shallow aquatic sedimentary systems are often dominated by three types of FS: slower‐growing clonal angiosperms, faster‐growing solitary seaweeds, and shell‐forming filter‐ and deposit‐feeding bivalves. Here, we tested the impacts of one FS on another by analyzing manipulative interaction experiments from 148 papers with a global meta‐analysis.We calculated 1,942 (non‐independent) Hedges’ g effect sizes, from 11,652 extracted values over performance responses, such as abundances, growths or survival of FS, and their associated standard deviations and replication levels. Standard aggregation procedures generated 511 independent Hedges’ g that was classified into six types of reciprocal impacts between FS.We found that (i) seaweeds had consistent negative impacts on angiosperms across performance responses, organismal sizes, experimental approaches, and ecosystem types; (ii) angiosperms and bivalves generally had positive impacts on each other (e.g., positive effects of angiosperms on bivalves were consistent across organismal sizes and experimental approaches, but angiosperm effect on bivalve growth and bivalve effect on angiosperm abundance were not significant); (iii) bivalves positively affected seaweeds (particularly on growth responses); (iv) there were generally no net effects of seaweeds on bivalves (except for positive effect on growth) or angiosperms on seaweeds (except for positive effect on ‘other processes’); and (v) bivalve interactions with other FS were typically more positive at higher temperatures, but angiosperm‐seaweed interactions were not moderated by temperature.Synthesis: Despite variations in experimental and spatiotemporal conditions, the stronger positive interactions at higher temperatures suggest that facilitation, particularly involving bivalves, may become more important in a future warmer world. Importantly, addressing research gaps, such as the scarcity of FS interaction experiments from tropical and freshwater systems and for less studied species, as well as testing for density‐dependent effects, could better inform aquatic ecosystem conservation and restoration efforts and broaden our knowledge of FS interactions in the Anthropocene.