Science Enabled by Specimen Data
Li, D., X. Wang, K. Jiang, R. An, Y. Li, and D. Liu. 2024. The impact of climate change and the conservation of the keystone Asian honeybee using niche models and systematic prioritization C. Bahlai [ed.],. Journal of Economic Entomology. https://doi.org/10.1093/jee/toae018
Global warming has seriously disturbed the Earth’s ecosystems, and in this context, Asian honeybee (Apis cerana) has experienced a dramatic decline in recent decades. Here, we examined both direct and indirect effects of climate change on A. cerana through ecological niche modeling of A. cerana, and its disease pathogens (i.e., Chinese sacbrood virus and Melissococcus plutonius) and enemies (i.e., Galleria mellonella and Vespa mandarinia). Ecological niche modeling predicts that climate change will increase the potential suitability of A. cerana, but it will also cause some of the original habitat areas to become unsuitable. Outbreak risks of Chinese sacbrood disease and European Foulbrood will increase dramatically, while those of G. mellonella and V. mandarinia will decrease only slightly. Thus, climate change will produce an unfavorable situation for even maintaining some A. cerana populations in China in the future. Genetic structure analyses showed that the A. cerana population from Hainan Island had significant genetic differentiation from that of the mainland, and there was almost no gene flow between the 2, suggesting that urgent measures are needed to protect the unique genetic resources there. Through taking an integrated planning technique with the Marxan approach, we optimized conservation planning, and identified potential nature reserves (mainly in western Sichuan and southern Tibet) for conservation of A. cerana populations. Our results can provide insights into the potential impact of climate change on A. cerana, and will help to promote the conservation of the keystone honeybee in China and the long-term sustainability of its ecosystem services.
Ghazali, S. Z., S. Lavoué, T. Sukmono, A. Habib, M. P. Tan, and S. A. M. Nor. 2023. Cenozoic colonisation of the Indian Ocean region by the Australian freshwater-originating glassperch family Ambassidae (Teleostei). Molecular Phylogenetics and Evolution 186: 107832. https://doi.org/10.1016/j.ympev.2023.107832
We examined the phylogeny and biogeography of the glassperch family Ambassidae (Teleostei), which is widely distributed in the freshwater, brackish and marine coastal habitats across the Indo-West Pacific region. We first built a comprehensive time-calibrated phylogeny of Ambassidae using five genes. We then used this tree to reconstruct the evolution of the salinity preference and ancestral areas. Our results indicate that the two largest genera of Ambassidae, Ambassis and Parambassis, are each not monophyletic. The most recent common ancestor of Ambassidae was freshwater adapted and lived in Australia about 56 million years ago. Three independent freshwater-to-marine transitions are inferred, but no marine-to-freshwater ones. To explain the distribution of ambassids, we hypothesise two long-distance marine dispersal events from Australia. A first event was towards Southeast Asia during the early Cenozoic, followed by a second one towards Africa during mid-Cenozoic. The phylogenetic signal associated with the salinity adaptation of these events was not detected, possibly because of the selective extinction of intermediate marine lineages. The Ambassidae shares two characteristics with other freshwater fish groups distributed in continental regions surrounding the Indian Ocean: They are too young to support the hypothesis that their distribution is the result of the fragmentation of Gondwana, but they did not retain the phylogenetic signal of their marine dispersal.
Ramírez Icaza, O., A. H. Díaz de la Vega-Pérez, and M. Sánchez Luna. 2023. Indotyphlops braminus (SQUAMATA: TYPHLOPIDAE). Revista Latinoamericana de Herpetología 6: 50–51. https://doi.org/10.22201/fc.25942158e.2023.01.607
(no abstract available)
Hausdorf, B. 2023. Distribution patterns of established alien land snail species in the Western Palaearctic Region. NeoBiota 81: 1–32. https://doi.org/10.3897/neobiota.81.96360
AbstractEstablished alien land snail species that were introduced into the Western Palaearctic Region from other regions and their spread in the Western Palaearctic are reviewed. Thirteen of the 22 species came from North America, three from Sub-Saharan Africa, two from the Australian region, three probably from the Oriental Region and one from South America. The establishment of outdoor populations of these species was usually first seen at the western or southern rims of the Western Palearctic. Within Europe, the alien species usually spread from south to north and from west to east. The latitudinal ranges of the alien species significantly increased with increasing time since the first record of introduction to the Western Palearctic. The latitudinal mid-points of the Western Palaearctic and native ranges of the species are significantly correlated when one outlier is omitted. There is a general trend of poleward shifts of the ranges of the species in the Western Palaearctic compared to their native ranges. There are three reasons for these shifts: (1) the northward expansion of some species in Western Europe facilitated by the oceanic climate, (2) the impediment to the colonisation of southern latitudes in the Western Palaearctic due to their aridity and (3) the establishment of tropical species in the Mediterranean and the Middle East. Most of the species are small, not carnivorous and unlikely to cause serious ecological or economic damage. In contrast, the recently introduced large veronicellid slugs from Sub-Saharan Africa and the giant African snail Lissachatinafulica could cause economic damage in irrigated agricultural areas or greenhouses in the Mediterranean and the Middle East.
Bento, M., H. Niza, A. Cartaxana, S. Bandeira, J. Paula, and A. M. Correia. 2023. Mind the Gaps: Taxonomic, Geographic and Temporal Data of Marine Invertebrate Databases from Mozambique and São Tomé and Príncipe. Diversity 15: 70. https://doi.org/10.3390/d15010070
One of the best ways to share and disseminate biodiversity information is through the digitization of data and making it available via online databases. The rapid growth of publicly available biodiversity data is not without problems which may decrease the utility of online databases. In this study we analyze taxonomic, geographic and temporal data gaps, and bias related to existing data on selected marine invertebrate occurrences along the coastline of two African countries, Mozambique and São Tomé and Príncipe. The final marine invertebrate dataset comprises of 19.910 occurrences, but 32% of the original dataset occurrences were excluded due to data gaps. Most marine invertebrates in Mozambique were collected in seagrasses, whereas in São Tomé and Príncipe they were mostly collected offshore. The dataset has a temporal coverage from 1816 to 2019, with most occurrences collected in the last two decades. This study provides baseline information relevant to a better understanding of marine invertebrate biodiversity data gaps and bias in these habitats along the coasts of these countries. The information can be further applied to complete marine invertebrate data gaps contributing to design informed sampling strategies and advancing refined datasets that can be used in management and conservation plans in both countries.
Chiarenza, A. A., A. M. Waterson, D. N. Schmidt, P. J. Valdes, C. Yesson, P. A. Holroyd, M. E. Collinson, et al. 2022. 100 million years of turtle paleoniche dynamics enable the prediction of latitudinal range shifts in a warming world. Current Biology. https://doi.org/10.1016/j.cub.2022.11.056
Past responses to environmental change provide vital baseline data for estimating the potential resilience of extant taxa to future change. Here, we investigate the latitudinal range contraction that terrestrial and freshwater turtles (Testudinata) experienced from the Late Cretaceous to the Paleogene (100.5–23.03 mya) in response to major climatic changes. We apply ecological niche modeling (ENM) to reconstruct turtle niches, using ancient and modern distribution data, paleogeographic reconstructions, and the HadCM3L climate model to quantify their range shifts in the Cretaceous and late Eocene. We then use the insights provided by these models to infer their probable ecological responses to future climate scenarios at different representative concentration pathways (RCPs 4.5 and 8.5 for 2100), which project globally increased temperatures and spreading arid biomes at lower to mid-latitudes. We show that turtle ranges are predicted to expand poleward in the Northern Hemisphere, with decreased habitat suitability at lower latitudes, inverting a trend of latitudinal range contraction that has been prevalent since the Eocene. Trionychids and freshwater turtles can more easily track their niches than Testudinidae and other terrestrial groups. However, habitat destruction and fragmentation at higher latitudes will probably reduce the capability of turtles and tortoises to cope with future climate changes.
Tapondjou Nkonmeneck, W. P., K. E. Allen, P. M. Hime, K. N. Knipp, M. M. Kameni, A. M. Tchassem, L. N. Gonwouo, and R. M. Brown. 2022. Diversification and historical demography of Rhampholeon spectrum in West-Central Africa N. Dahanukar [ed.],. PLOS ONE 17: e0277107. https://doi.org/10.1371/journal.pone.0277107
Pygmy Chameleons of the genus Rhampholeon represent a moderately diverse, geographically circumscribed radiation, with most species (18 out of 19 extant taxa) limited to East Africa. The one exception is Rhampholeon spectrum, a species restricted to West-Central African rainforests. We set out to characterize the geographic basis of genetic variation in this disjunctly distributed Rhampholeon species using a combination of multilocus Sanger data and genomic sequences to explore population structure and range-wide phylogeographic patterns. We also employed demographic analyses and niche modeling to distinguish between alternate explanations to contextualize the impact of past geological and climatic events on the present-day distribution of intraspecific genetic variation. Phylogenetic analyses suggest that R. spectrum is a complex of five geographically delimited populations grouped into two major clades (montane vs. lowland). We found pronounced population structure suggesting that divergence and, potentially, speciation began between the late Miocene and the Pleistocene. Sea level changes during the Pleistocene climatic oscillations resulted in allopatric divergence associated with dispersal over an ocean channel barrier and colonization of Bioko Island. Demographic inferences and range stability mapping each support diversification models with secondary contact due to population contraction in lowland and montane refugia during the interglacial period. Allopatric divergence, congruent with isolation caused by geologic uplift of the East African rift system, the “descent into the Icehouse,” and aridification of sub-Saharan Africa during the Eocene-Oligocene are identified as the key events explaining the population divergence between R. spectrum and its closely related sister clade from the Eastern Arc Mountains. Our results unveil cryptic genetic diversity in R. spectrum, suggesting the possibility of a species complex distributed across the Lower Guinean Forest and the Island of Bioko. We highlight the major element of species diversification that modelled today’s diversity and distributions in most West-Central African vertebrates.
Liu, S., S. Xia, D. Wu, J. E. Behm, Y. Meng, H. Yuan, P. Wen, et al. 2022. Understanding global and regional patterns of termite diversity and regional functional traits. iScience: 105538. https://doi.org/10.1016/j.isci.2022.105538
Our understanding of broad-scale biodiversity and functional trait patterns is largely based on plants, and relatively little information is available on soil arthropods. Here, we investigated the distribution of termite diversity globally and morphological traits and diversity across China. Our analyses showed increasing termite species richness with decreasing latitude at both the globally, and within-China. Additionally, we detected obvious latitudinal trends in the mean community value of termite morphological traits on average, with body size and leg length decreasing with increasing latitude. Furthermore, temperature, NDVI and water variables were the most important drivers controlling the variation in termite richness, and temperature and soil properties were key drivers of the geographic distribution of termite morphological traits. Our global termite richness map is one of the first high resolution maps for any arthropod group and especially given the functional importance of termites, our work provides a useful baseline for further ecological analysis.
Lal, M. M., K. T. Brown, P. Chand, and T. D. Pickering. 2022. An assessment of the aquaculture potential of indigenous freshwater food fish of Fiji, Papua New Guinea, Vanuatu, Solomon Islands, Samoa and Tonga as alternatives to farming of tilapia. Reviews in Aquaculture. https://doi.org/10.1111/raq.12749
An important driver behind introductions for aquaculture of alien fish species into Pacific Island Countries and Territories (PICTs) is a lack of knowledge about domestication suitability and specific culture requirements of indigenous taxa. Introductions may be appropriate in some circumstances, but in other circumstances, the associated risks may outweigh the benefits, so greater understanding of indigenous species' aquaculture potential is important. This review summarises literature for indigenous freshwater food fish species from Papua New Guinea, Fiji, Vanuatu, the Solomon Islands, Samoa and Tonga, and evaluates their aquaculture potential for food security and/or small‐scale livelihoods. A species selection criteria incorporating economic, social, biological and environmental spheres was used to score 62 candidate species. Tilapia (Oreochromis mossambicus and O. niloticus) now established in PICTs were evaluated for comparison. Results show that 13 species belonging to the families Mugilidae (Mullets), Terapontidae (Grunters), Kuhliidae (Flagtails) and Scatophagidae (Scats) have the highest culture potential according to selection criteria. These feed at a relatively low trophic level (are herbivores/detritivores), have comparatively fast growth rates and overall possess characteristics most amenable for small‐scale, inland aquaculture. The four top‐ranked candidates are all mountain mullets Cestraeus spp., followed by Nile tilapia (Oreochromis niloticus). Lower ranked candidates include three other mullets (Planiliza melinoptera, P. subviridis and Mugil cephalus) and rock flagtail Kuhlia rupestris. Importantly, many species remain data deficient in aspects of their reproductive biology or culture performance. Species profiles and ranked priority species by country are provided with logistical, technological and environmental assessments of country capacities to culture each species.
Lioy, S., C. Bergamino, and M. Porporato. 2022. The invasive hornet Vespa velutina : distribution, impacts and management options. CABI Reviews 2022. https://doi.org/10.1079/cabireviews202217030
: The Asian yellow-legged hornet Vespa velutina is an invasive alien species introduced and widespread in several countries of Europe and Asia. Its diffusion generates relevant environmental and socio-economic impacts. Environmental impacts include threats to the native insect biodiversity and the pollination ecosystem services. Socio-economic impacts include threats to the apiculture sector, economic consequences for the adoption of management strategies, social concern and health issues. Different options were developed and adopted for (i) preventing the introduction of V. velutina, (ii) early detecting its presence, (iii) eradicating populations at the initial stage of invasion or (iv) controlling populations for limiting and mitigating its impacts. The aim of this review was to provide an updated overview about the distribution, impacts and options for managing V. velutina populations, through a literature review of the published academic documents. Moreover, this study highlights that some topics received little attention (impacts of V. velutina on the biodiversity, on the pollination ecosystem services, on the economy) or require further research efforts (effective control methods for V. velutina); therefore, future research should be directed towards filling these gaps of knowledge.