Science Enabled by Specimen Data

Tang, T., Y. Zhu, Y.-Y. Zhang, J.-J. Chen, J.-B. Tian, Q. Xu, B.-G. Jiang, et al. 2024. The global distribution and the risk prediction of relapsing fever group Borrelia: a data review with modelling analysis. The Lancet Microbe. https://doi.org/10.1016/s2666-5247(23)00396-8

Background The recent discovery of emerging relapsing fever group Borrelia (RFGB) species, such as Borrelia miyamotoi, poses a growing threat to public health. However, the global distribution and associated risk burden of these species remain uncertain. We aimed to map the diversity, distribution, and potential infection risk of RFGB.MethodsWe searched PubMed, Web of Science, GenBank, CNKI, and eLibrary from Jan 1, 1874, to Dec 31, 2022, for published articles without language restriction to extract distribution data for RFGB detection in vectors, animals, and humans, and clinical information about human patients. Only articles documenting RFGB infection events were included in this study, and data for RFGB detection in vectors, animals, or humans were composed into a dataset. We used three machine learning algorithms (boosted regression trees, random forest, and least absolute shrinkage and selection operator logistic regression) to assess the environmental, ecoclimatic, biological, and socioeconomic factors associated with the occurrence of four major RFGB species: Borrelia miyamotoi, Borrelia lonestari, Borrelia crocidurae, and Borrelia hermsii; and mapped their worldwide risk level.FindingsWe retrieved 13 959 unique studies, among which 697 met the selection criteria and were used for data extraction. 29 RFGB species have been recorded worldwide, of which 27 have been identified from 63 tick species, 12 from 61 wild animals, and ten from domestic animals. 16 RFGB species caused human infection, with a cumulative count of 26 583 cases reported from Jan 1, 1874, to Dec 31, 2022. Borrelia recurrentis (17 084 cases) and Borrelia persica (2045 cases) accounted for the highest proportion of human infection. B miyamotoi showed the widest distribution among all RFGB, with a predicted environmentally suitable area of 6·92 million km2, followed by B lonestari (1·69 million km2), B crocidurae (1·67 million km2), and B hermsii (1·48 million km2). The habitat suitability index of vector ticks and climatic factors, such as the annual mean temperature, have the most significant effect among all predictive models for the geographical distribution of the four major RFGB species.InterpretationThe predicted high-risk regions are considerably larger than in previous reports. Identification, surveillance, and diagnosis of RFGB infections should be prioritised in high-risk areas, especially within low-income regions.FundingNational Key Research and Development Program of China.

Rodríguez-Rey, M., and G. Grenouillet. 2022. Disentangling the Drivers of the Sampling Bias of Freshwater Fish across Europe. Fishes 7: 383. https://doi.org/10.3390/fishes7060383

The Wallacean shortfall refers to the knowledge gap in biodiversity distributions. There is still limited knowledge for freshwater fish species despite the importance of focusing conservation efforts towards this group due to their alarming extinction risk and the increasing human pressure on freshwater ecosystems. Here, we addressed the Wallacean shortfall for freshwater fish faunas across Europe by using the completeness indicator derived from species accumulation curves to quantify the fish sampling efforts. The multiple potential drivers of completeness that were previously related to the sampling efforts for other species (i.e., population density, nature reserves, or distance to cities) were tested using a 10 × 10 km2 grid resolution, as well as environmental (e.g., climatic) factors. Our results suggested that although there was an overall spatial pattern at the European level, the completeness was highly country-dependent. Accessibility parameters explained the sampling efforts, as for other taxa. Likewise, climate factors were related to survey completeness, possibly pointing to the river conditions required for fish sampling. The survey effort map we provide can be used to optimize future sampling, aiming at filling the data gaps in undersampled regions like the eastern European countries, as well as to account for the current bias in any ecological modeling using such data, with important implications for conservation and management.

Sweet, F. S. T., B. Apfelbeck, M. Hanusch, C. Garland Monteagudo, and W. W. Weisser. 2022. Data from public and governmental databases show that a large proportion of the regional animal species pool occur in cities in Germany. Journal of Urban Ecology 8. https://doi.org/10.1093/jue/juac002

Cities have been shown to be biodiverse, but it is unclear what fraction of a regional species pool can live within city borders and how this differs between taxa. Among animals, most research has focused on a few well-studied taxa, such as birds or butterflies. For other species, progress is limite…

Cunze, S., G. Glock, and S. Klimpel. 2021. Spatial and temporal distribution patterns of tick-borne diseases (Tick-borne Encephalitis and Lyme Borreliosis) in Germany. PeerJ 9: e12422. https://doi.org/10.7717/peerj.12422

Background In the face of ongoing climate warming, vector-borne diseases are expected to increase in Europe, including tick-borne diseases (TBD). The most abundant tick-borne diseases in Germany are Tick-Borne Encephalitis (TBE) and Lyme Borreliosis (LB), with Ixodes ricinus as the main vector. Meth…

Hughes, A. C., M. C. Orr, K. Ma, M. J. Costello, J. Waller, P. Provoost, Q. Yang, et al. 2021. Sampling biases shape our view of the natural world. Ecography 44: 1259–1269. https://doi.org/10.1111/ecog.05926

Spatial patterns of biodiversity are inextricably linked to their collection methods, yet no synthesis of bias patterns or their consequences exists. As such, views of organismal distribution and the ecosystems they make up may be incorrect, undermining countless ecological and evolutionary studies.…

Cooper, N., A. L. Bond, J. L. Davis, R. Portela Miguez, L. Tomsett, and K. M. Helgen. 2019. Sex biases in bird and mammal natural history collections. Proceedings of the Royal Society B: Biological Sciences 286: 20192025. https://doi.org/10.1098/rspb.2019.2025

Natural history specimens are widely used across ecology, evolutionary biology and conservation. Although biological sex may influence all of these areas, it is often overlooked in large-scale studies using museum specimens. If collections are biased towards one sex, studies may not be representativ…

Oegelund Nielsen, R., R. da Silva, J. Juergens, J. Staerk, L. Lindholm Sørensen, J. Jackson, S. Q. Smeele, and D. A. Conde. 2020. Standardized data to support conservation prioritization for sharks and batoids (Elasmobranchii). Data in Brief 33: 106337. https://doi.org/10.1016/j.dib.2020.106337

#N/A

Liu, X., T. M. Blackburn, T. Song, X. Li, C. Huang, and Y. Li. 2019. Risks of Biological Invasion on the Belt and Road. Current Biology 29: 499-505.e4. https://doi.org/10.1016/j.cub.2018.12.036

China’s Belt and Road Initiative (BRI) is an unprecedented global development program that involves nearly half of the world’s countries [1]. It not only will have economic and political influences, but also may generate multiple environmental challenges and is a focus of considerable academic and p…