Science Enabled by Specimen Data

Tackett, M., C. Berg, T. Simmonds, O. Lopez, J. Brown, R. Ruggiero, and J. Weber. 2022. Breeding system and geospatial variation shape the population genetics of Triodanis perfoliata. Ecology and Evolution 12. https://doi.org/10.1002/ece3.9382

Both intrinsic and extrinsic forces work together to shape connectivity and genetic variation in populations across the landscape. Here we explored how geography, breeding system traits, and environmental factors influence the population genetic patterns of Triodanis perfoliata, a widespread mix‐mating annual plant in the contiguous US. By integrating population genomic data with spatial analyses and modeling the relationship between a breeding system and genetic diversity, we illustrate the complex ways in which these forces shape genetic variation. Specifically, we used 4705 single nucleotide polymorphisms to assess genetic diversity, structure, and evolutionary history among 18 populations. Populations with more obligately selfing flowers harbored less genetic diversity (π: R2 = .63, p = .01, n = 9 populations), and we found significant population structuring (FST = 0.48). Both geographic isolation and environmental factors played significant roles in predicting the observed genetic diversity: we found that corridors of suitable environments appear to facilitate gene flow between populations, and that environmental resistance is correlated with increased genetic distance between populations. Last, we integrated our genetic results with species distribution modeling to assess likely patterns of connectivity among our study populations. Our landscape and evolutionary genetic results suggest that T. perfoliata experienced a complex demographic and evolutionary history, particularly in the center of its distribution. As such, there is no singular mechanism driving this species' evolution. Together, our analyses support the hypothesis that the breeding system, geography, and environmental variables shape the patterns of diversity and connectivity of T. perfoliata in the US.

Aguirre‐Liguori, J. A., A. Morales‐Cruz, and B. S. Gaut. 2022. Evaluating the persistence and utility of five wild Vitis species in the context of climate change. Molecular Ecology. https://doi.org/10.1111/mec.16715

Crop wild relatives (CWRs) have the capacity to contribute novel traits to agriculture. Given climate change, these contributions may be especially vital for the persistence of perennial crops, because perennials are often clonally propagated and consequently do not evolve rapidly. By studying the landscape genomics of samples from five Vitis CWRs (V. arizonica, V. mustangensis, V. riparia, V. berlandieri and V. girdiana) in the context of projected climate change, we addressed two goals. The first was to assess the relative potential of different CWR accessions to persist in the face of climate change. By integrating species distribution models with adaptive genetic variation, additional genetic features such as genomic load and a phenotype (resistance to Pierce’s Disease), we predicted that accessions from one species (V. mustangensis) are particularly well‐suited to persist in future climates. The second goal was to identify which CWR accessions may contribute to bioclimatic adaptation for grapevine (V. vinifera) cultivation. To do so, we evaluated whether CWR accessions have the allelic capacity to persist if moved to locations where grapevines (V. vinifera) are cultivated in the United States. We identified six candidates from V. mustangensis and hypothesized that they may prove useful for contributing alleles that can mitigate climate impacts on viticulture. By identifying candidate germplasm, this work takes a conceptual step toward assessing the genomic and bioclimatic characteristics of CWRs.

Marcussen, T., H. E. Ballard, J. Danihelka, A. R. Flores, M. V. Nicola, and J. M. Watson. 2022. A Revised Phylogenetic Classification for Viola (Violaceae). Plants 11: 2224. https://doi.org/10.3390/plants11172224

The genus Viola (Violaceae) is among the 40–50 largest genera among angiosperms, yet its taxonomy has not been revised for nearly a century. In the most recent revision, by Wilhelm Becker in 1925, the then-known 400 species were distributed among 14 sections and numerous unranked groups. Here, we provide an updated, comprehensive classification of the genus, based on data from phylogeny, morphology, chromosome counts, and ploidy, and based on modern principles of monophyly. The revision is presented as an annotated global checklist of accepted species of Viola, an updated multigene phylogenetic network and an ITS phylogeny with denser taxon sampling, a brief summary of the taxonomic changes from Becker’s classification and their justification, a morphological binary key to the accepted subgenera, sections and subsections, and an account of each infrageneric subdivision with justifications for delimitation and rank including a description, a list of apomorphies, molecular phylogenies where possible or relevant, a distribution map, and a list of included species. We distribute the 664 species accepted by us into 2 subgenera, 31 sections, and 20 subsections. We erect one new subgenus of Viola (subg. Neoandinium, a replacement name for the illegitimate subg. Andinium), six new sections (sect. Abyssinium, sect. Himalayum, sect. Melvio, sect. Nematocaulon, sect. Spathulidium, sect. Xanthidium), and seven new subsections (subsect. Australasiaticae, subsect. Bulbosae, subsect. Clausenianae, subsect. Cleistogamae, subsect. Dispares, subsect. Formosanae, subsect. Pseudorupestres). Evolution within the genus is discussed in light of biogeography, the fossil record, morphology, and particular traits. Viola is among very few temperate and widespread genera that originated in South America. The biggest identified knowledge gaps for Viola concern the South American taxa, for which basic knowledge from phylogeny, chromosome counts, and fossil data is virtually absent. Viola has also never been subject to comprehensive anatomical study. Studies into seed anatomy and morphology are required to understand the fossil record of the genus.

Ward, S. F., E. G. Brockerhoff, R. M. Turner, T. Yamanaka, L. Marini, S. Fei, and A. M. Liebhold. 2022. Prevalence and drivers of a tree-killing bark beetle, Ips typographus (Coleoptera, Scolytinae), in international invasion pathways into the USA. Journal of Pest Science. https://doi.org/10.1007/s10340-022-01559-4

The unintentional transport of insects beyond their native ranges has greatly increased with globalization over the past century, leading to higher propagule pressure in non-native ranges of many species. Knowledge about the prevalence of a species in international invasion pathways is important for predicting invasions and taking appropriate biosecurity measures. We investigated the spatiotemporal patterns and drivers of interceptions—detections of at least one individual with imported goods that potentially serve as a proxy for arrival rates—for a tree-killing bark beetle, the European spruce bark beetle ( Ips typographus L.; Coleoptera: Curculionidae: Scolytinae), in the USA from 1914 to 2008. Across the study period, there were 505 interceptions of I. typographus with shipments originating from > 25 countries at ports in 22 US states. Interceptions first occurred in 1938, peaked at 33 and 25 in 1984 and 1996, respectively, and declined after the mid-1990s. Interceptions of I. typographus did not have a statistically detectable relationship with outbreak levels in the native range, were inversely related to annual import volume (an artifact likely driven by changes in inspection policies), and were more frequent during the winter. Thus, while interceptions of I. typographus are challenging to predict, we found evidence that (i) biosecurity practices against this beetle could be increased during winter but not in response to outbreaks in source regions and (ii) the overall abundance of this beetle in invasion pathways has recently decreased, probably because strengthened phytosanitary protocols have reduced contamination levels and/or decreased the perceived need for inspections.

Testo, W. L., A. L. de Gasper, S. Molino, J. M. G. y Galán, A. Salino, V. A. de O. Dittrich, and E. B. Sessa. 2022. Deep vicariance and frequent transoceanic dispersal shape the evolutionary history of a globally distributed fern family. American Journal of Botany. https://doi.org/10.1002/ajb2.16062

Premise Historical biogeography of ferns is typically expected to be dominated by long-distance dispersal, due to their minuscule spores. However, few studies have inferred the historical biogeography of a large and widely distributed group of ferns to test this hypothesis. Our aims are to determine the extent to which long-distance dispersal vs. vicariance have shaped the history of the fern family Blechnaceae, to explore ecological correlates of dispersal and diversification, and to determine whether these patterns differ between the northern and southern hemispheres. Methods We used sequence data for three chloroplast loci to infer a time-calibrated phylogeny for 154 out of 265 species of Blechnaceae, including representatives of all genera in the family. This tree was used to conduct ancestral range reconstruction and stochastic character mapping, estimate diversification rates, and identify ecological correlates of diversification. Key results Blechnaceae originated in Eurasia and began diversifying in the late Cretaceous. A lineage comprising most extant diversity diversified principally in the austral Pacific region around the Paleocene-Eocene Thermal Maximum. Land connections that existed near the poles during periods of warm climates likely facilitated migration of several lineages, with subsequent climate-mediated vicariance shaping current distributions. Long-distance dispersal is frequent and asymmetrical, with New Zealand/Pacific Islands, Australia, and tropical America being major source areas. Conclusions Ancient vicariance and extensive long-distance dispersal have shaped the history of Blechnaceae in both the northern and southern hemispheres. The exceptional diversity in austral regions appears to reflect rapid speciation in these areas; mechanisms underlying this evolutionary success remain uncertain.

Lu, L.-L., B.-H. Jiao, F. Qin, G. Xie, K.-Q. Lu, J.-F. Li, B. Sun, et al. 2022. Artemisia pollen dataset for exploring the potential ecological indicators in deep time. Earth System Science Data 14: 3961–3995. https://doi.org/10.5194/essd-14-3961-2022

Abstract. Artemisia, along with Chenopodiaceae, is the dominant component growing in the desert and dry grassland of the Northern Hemisphere. Artemisia pollen with its high productivity, wide distribution, and easy identification is usually regarded as an eco-indicator for assessing aridity and distinguishing grassland from desert vegetation in terms of the pollen relative abundance ratio of Chenopodiaceae/Artemisia (C/A). Nevertheless, divergent opinions on the degree of aridity evaluated by Artemisia pollen have been circulating in the palynological community for a long time. To solve the confusion, we first selected 36 species from nine clades and three outgroups of Artemisia based on the phylogenetic framework, which attempts to cover the maximum range of pollen morphological variation. Then, sampling, experiments, photography, and measurements were taken using standard methods. Here, we present pollen datasets containing 4018 original pollen photographs, 9360 pollen morphological trait measurements, information on 30 858 source plant occurrences, and corresponding environmental factors. Hierarchical cluster analysis on pollen morphological traits was carried out to subdivide Artemisia pollen into three types. When plotting the three pollen types of Artemisia onto the global terrestrial biomes, different pollen types of Artemisia were found to have different habitat ranges. These findings change the traditional concept of Artemisia being restricted to arid and semi-arid environments. The data framework that we designed is open and expandable for new pollen data of Artemisia worldwide. In the future, linking pollen morphology with habitat via these pollen datasets will create additional knowledge that will increase the resolution of the ecological environment in the geological past. The Artemisia pollen datasets are freely available at Zenodo (https://doi.org/10.5281/zenodo.6900308; Lu et al., 2022).

Coca‐de‐la‐Iglesia, M., N. G. Medina, J. Wen, and V. Valcárcel. 2022. Evaluation of the tropical‐temperate transitions: An example of climatic characterization in the Asian Palmate group of Araliaceae. American Journal of Botany. https://doi.org/10.1002/ajb2.16059

(no abstract available)

Contreras-Medina, R., M. Santiago-Alvarado, D. Espinosa, G. Rivas, and I. Luna-Vega. 2022. Distributional patterns and conservation of the genus Habromys (Rodentia: Cricetidae) in Mesoamerica. Studies on Neotropical Fauna and Environment: 1–17. https://doi.org/10.1080/01650521.2022.2085071

We analyzed the geographical distribution of Habromys species based on distributional data from museum specimens, web databases, and literature. We recorded species-presence data of each species in 0.5° × 0.5° grid cells and biogeographic provinces in Mexico and Central America. We analyzed the association between vegetation types and land use. We carried out species distribution models of most species of Habromys and those tree species frequently harboring these mice, finding a high distributional congruence among mice and trees. Species of Habromys occur throughout the montane systems of Mexico and northern Central America, so they can be considered characteristic elements of the Neotropical montane cloud forests. All species of the genus occur in Mexico, whereas Guatemala and El Salvador have only one species. Although all species of Habromys are highly restricted and considered rare species, only one (H. simulatus) is currently protected by Mexican laws. We assigned two species to a high and four to the critical conservation risk. Habromys species contribute to the recognition of Mesoamerica as a biodiversity hotspot.

Hirabayashi, K., S. J. Murch, and L. A. E. Erland. 2022. Predicted impacts of climate change on wild and commercial berry habitats will have food security, conservation and agricultural implications. Science of The Total Environment 845: 157341. https://doi.org/10.1016/j.scitotenv.2022.157341

Climate change is now a reality and is altering ecosystems, with Canada experiencing 2–4 times the global average rate of warming. This will have a critical impact on berry cultivation and horticulture. Enhancing our understanding of how wild and cultivated berries will perform under changing climates will be essential to mitigating impacts on ecosystems, culture and food security. Our objective was to predict the impact of climate change on habitat suitability of four berry producing Vaccinium species: two species with primarily northern distributions (V. uliginosum, V. vitis-idaea), one species with a primarily southern distribution (V. oxycoccos), and the commercially cultivated V. macrocarpon. We used the maximum entropy (Maxent) model and the CMIP6 shared socioeconomic pathways (SSPs) 126 and 585 projected to 2041–2060 and 2061–2080. Wild species showed a uniform northward progression and expansion of suitable habitat. Our modeling predicts that suitable growing regions for commercial cranberries are also likely to shift with some farms becoming unsuitable for the current varieties and other regions becoming more suitable for cranberry farms. Both V. macrocarpon and V. oxycoccos showed a high dependence on precipitation-associated variables. Vaccinium vitis-idaea and V. uliginosum had a greater number of variables with smaller contributions which may improve their resilience to individual climactic events. Future competition between commercial cranberry farms and wild berries in protected areas could lead to conflicts between agriculture and conservation priorities. New varieties of commercial berries are required to maintain current commercial berry farms.

Kendig, A. E., S. Canavan, P. J. Anderson, S. L. Flory, L. A. Gettys, D. R. Gordon, B. V. Iannone III, et al. 2022. Scanning the horizon for invasive plant threats using a data-driven approach. NeoBiota 74: 129–154. https://doi.org/10.3897/neobiota.74.83312

AbstractEarly detection and eradication of invasive plants are more cost-effective than managing well-established invasive plant populations and their impacts. However, there is high uncertainty around which taxa are likely to become invasive in a given area. Horizon scanning that combines a data-driven approach with rapid risk assessment and consensus building among experts can help identify invasion threats. We performed a horizon scan of potential invasive plant threats to Florida, USA—a state with a high influx of introduced species, conditions that are generally favorable for plant establishment, and a history of negative impacts from invasive plants. We began with an initial list of 2128 non-native plant taxa that are known invaders or crop pests. We built on previous invasive species horizon scans by developing data-based criteria to prioritize 100 taxa for rapid risk assessment. The semi-automated prioritization process included selecting taxa “on the horizon” (i.e., not yet in the target location and not on a noxious weed list) with climate matching, naturalization history, “weediness” record, and global commonness. We derived overall invasion risk scores with rapid risk assessment by evaluating the likelihood of each of the taxa arriving, establishing, and having an impact in Florida. Then, following a consensus-building discussion, we identified six plant taxa as high risk, with overall risk scores ranging from 75 to 100 out of a possible 125. The six taxa are globally distributed, easily transported to new areas, found in regions with climates similar to Florida’s, and can impact native plant communities, human health, or agriculture. Finally, we evaluated our initial and final lists for potential biases. Assessors tended to assign higher risk scores to taxa that had more available information. In addition, we identified biases towards four plant families and certain geographical regions of origin. Our horizon scan approach identified taxa conforming to metrics of high invasion risk and used a methodology refined for plants that can be applied to other locations.