Science Enabled by Specimen Data
Lombardi, E. M., H. Faust, and H. E. Marx. 2024. Synthesizing historical plant collections to identify priorities for future collection efforts and research applications. Ecosphere 15. https://doi.org/10.1002/ecs2.70102
To understand how and where biodiversity is threatened, it is imperative to build historical baselines that accurately characterize the present and past states of biodiversity across environments. Botanical collections provide important ecological, evolutionary, and biogeographic information on the diversity and distributions of plant taxa, yet biases in collection efforts across spatial, temporal, and taxonomic scales are well known. Here, we characterize and quantify trends in botanical collections made from across different abiotic, biotic, and sociopolitical boundaries within the present‐day state of New Mexico. Using a biodiversity informatics approach applied toward a regional case study, we identify opportunities for efficiently improving natural history collection coverage and analyses of botanical diversity. Accurate representation of botanical biodiversity, preserved for future generations through vouchered plant specimens deposited in herbaria, depends on collection decisions made now. This work aims to provide a useful workflow for synthesizing digitized regional botanical collections as researchers prioritize current and future resources in the face of global change.
Martínez-Fonseca, J. G., L. A. Trujillo, E. P. Westeen, F. A. Reid, C. Hood, M. A. Fernández-Mena, L. E. Gutiérrez-López, et al. 2024. New departmental and noteworthy records of mammals (Mammalia, Theria) from Nicaragua. Check List 20: 706–720. https://doi.org/10.15560/20.3.706
AbstractAbstract. neighboring countries. Recently, an increase in biological surveys and access to natural preserves has led to a better understanding of species distributions in Nicaragua and across Central America. Here, we provide new departmental records for three species of didelphid, 18 chiropterans (Phyllostomidae, Molossidae, Vespertilionidae), one geomyid, and one mustelid from 21 sites across the country. This work underscores the need for additional sampling across Nicaragua to fill gaps in the known distribution of many species. This information can facilitate or inform conservation actions in established and proposed preserves in Nicaragua.
Estrada-Sánchez, I., A. Espejo-Serna, J. García-Cruz, and A. R. López-Ferrari. 2024. Richness, distribution, and endemism of neotropical subtribe Ponerinae (Orchidaceae, Epidendreae). Brazilian Journal of Botany 47: 501–517. https://doi.org/10.1007/s40415-024-01005-y
The subtribe Ponerinae (Orchidaceae) includes the genera Helleriella A. D. Hawkes, Isochilus R. Brown, Nemaconia Knowles & Westc., and Ponera Lindl. Most of its species are epiphytes and usually grow on trees of the genus Quercus L. in cloud forests and temperate coniferous and broad-leaved forests; some taxa are rarely lithophytes or less frequently terrestrial. The aim of this study was to estimate the distribution of the species of the subtribe Ponerinae using ecological niche models (ENM), determine areas with highest richness and endemism rates with the occurrence data and the models obtained, and determine if the areas with highest richness and endemism recognized in this work are located within any of the conservation areas (ANPs) and/or Regiones Terrestres Prioritarias (RTPs). We reviewed 1 044 herbarium specimens from ten institutional collections, corresponding to two species of Helleriella , eleven of Isochilus , six of Nemaconia , and two of Ponera , and a geographic and taxonomic database was generated. ENM were constructed with MaxEnt 3.3; and we determine areas with highest species richness and endemism with Biodiverse 4.3. Mexico is the richest country with 21 species, followed by Guatemala with nine. The more widely distributed species are: Isochilus linearis (Jacq.) R.Br, and Nemaconia striata (Lindl.) Van den Berg, Salazar & Soto Arenas; I . oaxacanus Salazar & Soto Arenas is endemic to Mexican state of Oaxaca and N . dressleriana (Soto Arenas) van den Berg, Salazar & Soto Arenas of Morelos. The cells with higher occurrence richness and occurrence weighted endemism were located in Chiapas Highlands, and the higher occurrence of corrected weighted endemism is located in Transmexican Volcanic Belt, considered the nucleus of the Mexican Transition Zone. On the other hand, the cells with greater ENM richness and ENM weighted endemism were located in Sierra Madre del Sur, and the higher ENM corrected weighted endemism in Sierra Madre Oriental. It is suggested to change the status of the regions Cañón del Zopilote and El Tlacuache from RTPs to ANPs.
Rautela, K., A. Kumar, S. K. Rana, A. Jugran, and I. D. Bhatt. 2024. Distribution, Chemical Constituents and Biological Properties of Genus Malaxis. Chemistry & Biodiversity. https://doi.org/10.1002/cbdv.202301830
The genus Malaxis (family Orchidaceae), comprises nearly 183 species available across the globe. The plants of this genus have long been employed in traditional medical practices because of their numerous biological properties, like the treatment of infertility, hemostasis, burning sensation, bleeding diathesis, fever, diarrhea, dysentery, febrifuge, tuberculosis, etc. Various reports highlight their phytochemical composition and biological activities. However, there is a lack of systematic review on the distribution, phytochemistry, and biological properties of this genus. Hence, this study aims to conduct a thorough and critical review of Malaxis species, covering data published from 1965 to 2022 with nearly 90 articles. Also, it examines different bioactive compounds, their chemistry, and pharmacotherapeutics as well as their traditional uses. A total of 191 unique compounds, including the oil constituents were recorded from Malaxis species. The highest active ingredients were obtained from Malaxis acuminata (103) followed by Malaxis muscifera (50) and Malaxis rheedei (33). In conclusion, this review offers an overview of the current state of knowledge on Malaxis species and highlights prospects for future research projects on them. Additionally, it recommends the promotion of domestication studies for rare medicinal orchids like Malaxis and the prompt implementation of conservation measures.
Jiménez-López, D. A., M. J. Carmona-Higuita, G. Mendieta-Leiva, R. Martínez-Camilo, A. Espejo-Serna, T. Krömer, N. Martínez-Meléndez, and N. Ramírez-Marcial. 2023. Linking different resources to recognize vascular epiphyte richness and distribution in a mountain system in southeastern Mexico. Flora: 152261. https://doi.org/10.1016/j.flora.2023.152261
Mesoamerican mountains are important centers of endemism and diversity of epiphytes. The Sierra Madre of Chiapas in southeastern Mexico is a mountainous region of great ecological interest due to its high biological richness. We present the first checklist of epiphytes for this region based on a compilation of various information sources. In addition, we determined the conservation status for each species based on the Mexican Official Standard (NOM-059-SEMARNAT-2010), endemism based on geopolitical boundaries, spatial completeness with inventory completeness index, richness distribution with range maps, and the relationship between climatic variables (temperature and rainfall) with species richness using generalized additive models. Our dataset includes 9,799 records collected between 1896-2017. Our checklist includes 708 epiphytes within 160 genera and 26 families; the most species-rich family was Orchidaceae (355 species), followed by Bromeliaceae (82) and Polypodiaceae (79). There were 74 species within a category of risk and 59 species considered endemic. Completeness of epiphyte richness suggests that sampling is still largely incomplete, particularly in the lower parts of the mountain system. Species and family range maps show the highest richness at high elevations, while geographically richness increases towards the southeast. Epiphyte richness increases with increased rainfall, although a unimodal pattern was observed along the temperature gradient with a species richness peak between 16-20 C°. The Sierra Madre of Chiapas forms a refuge to more than 40% of all epiphytes reported for Mexico and its existing network of protected areas overlaps with the greatest epiphyte richness.
Reichgelt, T., A. Baumgartner, R. Feng, and D. A. Willard. 2023. Poleward amplification, seasonal rainfall and forest heterogeneity in the Miocene of the eastern USA. Global and Planetary Change 222: 104073. https://doi.org/10.1016/j.gloplacha.2023.104073
Paleoclimate reconstructions can provide a window into the environmental conditions in Earth history when atmospheric carbon dioxide concentrations were higher than today. In the eastern USA, paleoclimate reconstructions are sparse, because terrestrial sedimentary deposits are rare. Despite this, the eastern USA has the largest population and population density in North America, and understanding the effects of current and future climate change is of vital importance. Here, we provide terrestrial paleoclimate reconstructions of the eastern USA from Miocene fossil floras. Additionally, we compare proxy paleoclimate reconstructions from the warmest period in the Miocene, the Miocene Climatic Optimum (MCO), to those of an MCO Earth System Model. Reconstructed Miocene temperatures and precipitation north of 35°N are higher than modern. In contrast, south of 35°N, temperatures and precipitation are similar to today, suggesting a poleward amplification effect in eastern North America. Reconstructed Miocene rainfall seasonality was predominantly higher than modern, regardless of latitude, indicating greater variability in intra-annual moisture transport. Reconstructed climates are almost uniformly in the temperate seasonal forest biome, but heterogeneity of specific forest types is evident. Reconstructed Miocene terrestrial temperatures from the eastern USA are lower than modeled temperatures and coeval Atlantic sea surface temperatures. However, reconstructed rainfall is consistent with modeled rainfall. Our results show that during the Miocene, climate was most different from modern in the northeastern states, and may suggest a drastic reduction in the meridional temperature gradient along the North American east coast compared to today.
Gómez Díaz, J. A., A. Lira-Noriega, and F. Villalobos. 2023. Expanding protected areas in a Neotropical hotspot. International Journal of Sustainable Development & World Ecology: 1–15. https://doi.org/10.1080/13504509.2022.2163717
The region of central Veracruz is considered a biodiversity hotspot due to its high species richness and environmental heterogeneity, but only 2% of this region is currently protected. This study aimed to assess the current protected area system’s effectiveness and to identify priority conservation areas for expanding the existing protected area system. We used the distribution models of 1186 species from three kingdoms (Animalia, Plantae, and Fungi) together with ZONATION software, a conservation planning tool, to determine areas that could help expand the current network of protected areas. We applied three different parametrizations (including only species, using the boundary quality penalty, and using corridor connectivity). We found that protecting an additional 15% of the area would increase, between 16.2% and 19.3%, the protection of the distribution area of all species. We propose that the regions with a consensus of the three parametrizations should be declared as new protected areas to expand 374 km2 to the 216 km2 already protected. Doing so would double the protected surface in central Veracruz. The priority areas identified in this study have more species richness, carbon stock values, natural vegetation cover, and less human impact index than the existing protected areas. If our identified priority areas are declared protected, we could expect a future recovery of endangered species populations for Veracruz. The proposed new protected areas are planned and designed as corridors connecting currently isolated protected areas to promote biodiversity protection.
Campbell, L. C. E., E. T. Kiers, and G. Chomicki. 2022. The evolution of plant cultivation by ants. Trends in Plant Science. https://doi.org/10.1016/j.tplants.2022.09.005
Outside humans, true agriculture was previously thought to be restricted to social insects farming fungus. However, obligate farming of plants by ants was recently discovered in Fiji, prompting a re-examination of plant cultivation by ants. Here, we generate a database of plant cultivation by ants, identify three main types, and show that these interactions evolved primarily for shelter rather than food. We find that plant cultivation evolved at least 65 times independently for crops (~200 plant species), and 15 times in farmer lineages (~37 ant taxa) in the Neotropics and Asia/Australasia. Because of their high evolutionary replication, and variation in partner dependence, these systems are powerful models to unveil the steps in the evolution and ecology of insect agriculture.
Sotuyo, S., E. Pedraza-Ortega, E. Martínez-Salas, J. Linares, and L. Cabrera. 2022. Insights into phylogenetic divergence of Dalbergia (Leguminosae: Dalbergiae) from Mexico and Central America. Frontiers in Ecology and Evolution 10. https://doi.org/10.3389/fevo.2022.910250
The pantropical genus Dalbergia includes more than 250 species. Phylogenetic studies of the group are scarce and have only included two or three species distributed in Mexico. We obtained herbarium samples of Mexican, Central American, and South American species (sourced from MEXU). In addition, sequences of GenBank accessions were used to complement the study. Using internal transcribed spacer (ITS), the matK and rbcL sequences from 384 accessions comprising species from America, Asia, and Africa were sampled to evaluate phylogenetic relationships of Mexican species and infrageneric classifications based on morphological data. Phylogenetic analyses suggest that the genus Dalbergia is monophyletic and originated in South America. The species distributed in Mexico are not a monophyletic clade but are divided into four clades with affinities to South American and Asian species clades. There is no correlation between geography and large-scale phylogeny. The estimated ages of the Mexican and Central American clades ranged from 11.32 Ma (Dalbergia granadillo clade) to 1.88 Ma (Dalbergia ecastaphyllum clade). Multiple long-distance dispersal events should be used to explain the current genus distribution.
Eduardo Sáenz-Ceja, J., M. Arenas-Navarro, and A. Torres-Miranda. 2022. Prioritizing conservation areas and vulnerability analyses of the genus Pinus L. (Pinaceae) in Mexico. Journal for Nature Conservation 67: 126171. https://doi.org/10.1016/j.jnc.2022.126171
Mexico hosts the highest species richness of pines (Pinus, Pinaceae) worldwide; however, the priority areas for their conservation in the country are unknown. In this study, the ecological niche of the 50 native pine species was modeled. Then, through a multi-criteria analysis, the priority areas for the conservation of the genus Pinus were identified according to the spatial patterns of richness, geographic rareness, irreplaceability, the level of vulnerability of their habitat and the status of legal protection. The results revealed that the regions with high species richness differed from those with high endemism. Also, most pine species have undergone processes of habitat degradation, having been the endemic species the most affected. The priority areas covered regions with high species richness, high endemism, and highly degraded forests, located at mountainous portions of the Baja California Peninsula, the Sierra Madre Occidental, the Sierra Madre Oriental, the Trans-Mexican Volcanic Belt, and the Sierra Madre del Sur. A low proportion of priority areas overlapped with protected areas or terrestrial regions considered priorities for biological conservation. These results suggest that conservation efforts for this genus should be focused beyond regions with high species richness and current protected areas. Besides, the priority areas identified in this study can be the basis to create biological corridors and new protected areas, which could contribute significantly to the conservation of this genus in Mexico.