Science Enabled by Specimen Data

Menegotto, A., D. P. Tittensor, R. K. Colwell, and T. F. Rangel. 2024. Sampling Simulation in a Virtual Ocean Reveals Strong Sampling Effect in Marine Diversity Patterns. Global Ecology and Biogeography 34. https://doi.org/10.1111/geb.13952

ABSTRACTAimUndersampling and other sources of sampling bias pose significant issues in marine macroecology, particularly when shaping conservation and management decisions. Yet, determining the extent to which such biases impact our understanding of marine diversity remains elusive. Here, utilising empirical data on sampling efforts, we sampled from virtually established species distributions to evaluate how deep is the influence of sampling bias on estimations of the latitudinal gradient in marine diversity.LocationAtlantic Ocean.Time PeriodPresent.Taxa StudiedOphiuroidea.MethodsWe developed a computer simulation that implements two null models of species distribution (the geometric constraints and the area model) in a two‐dimensional domain, replicates the latitudinal distribution of historical sampling efforts and then quantifies diversity metrics (observed and estimated species richness) and sample completeness for each grid cell and latitudinal band.ResultsWe found consistent patterns of observed species richness across models, noting peaks at midlatitudes regardless of whether the true richness was unimodal or flat. Dips in equatorial diversity persisted even after using different methods of species richness estimation. Additional simulations showed that estimators' accuracy improved with increased sampling efforts, but only when samples were randomly distributed. Spatially aggregated samples inflate completeness without necessarily enhancing estimators' accuracy.Main ConclusionsThis finding emphasises the imperative of bolstering sampling efforts at tropical latitudes and deploying robust statistical techniques to mitigate undersampling effects. Meanwhile, we suggest considering sampling bias as an alternative null hypothesis for recorded marine diversity patterns.

Sánchez‐Campaña, C., C. Múrria, V. Hermoso, D. Sánchez‐Fernández, J. M. Tierno de Figueroa, M. González, A. Millán, et al. 2023. Anticipating where are unknown aquatic insects in Europe to improve biodiversity conservation. Diversity and Distributions. https://doi.org/10.1111/ddi.13714

Aim Understanding biodiversity patterns is crucial for prioritizing future conservation efforts and reducing the current rates of biodiversity loss. However, a large proportion of species remain undescribed (i.e. unknown biodiversity), hindering our ability to conduct this task. This phenomenon, known as the ‘Linnean shortfall’, is especially relevant in highly diverse, yet endangered, taxonomic groups, such as insects. Here we explore the distributions of recently described freshwater insect species in Europe to (1) infer the potential location of unknown biodiversity hotspots and (2) determine the variables that can anticipate the distribution of unknown biodiversity. Location The European continent, including western Russia, Cyprus and Turkey. Methods Georeferenced information of all sites where new aquatic insect species were described across Europe from 2000 to 2020 was compiled. In order to understand the observed spatial patterns in richness of recently described species, spatial units were defined (level 6 of HydroBASINS) and associated with a combination of a set of socioeconomic, environmental and sampling effort descriptors. A zero-inflated Poisson regression approach was used to model the richness of newly described species within each spatial unit. Results Nine hundred and sixty-six recently described species were found: 398 Diptera, 362 Trichoptera, 105 Coleoptera, 66 Plecoptera, 28 Ephemeroptera, 3 Neuroptera, 2 Lepidoptera and 2 Odonata. The Mediterranean Basin was the region with the highest number of recently described species (74%). The richness of recently described species per spatial unit across Europe was highest at mid-elevation areas (between 400 and 1000 m), latitudes between 40 and 50° and in areas with yearly average precipitation levels of 500–1000 mm, a medium intensity of sampling effort and low population density. The percentage of protected areas in each study unit was not significantly related to the richness of recently described species. In fact, 70% of the species were found outside protected areas. Main conclusions The results highlight the urgent need to concentrate conservation efforts in freshwater ecosystems located at mid-altitude areas and out of protected areas across the Mediterranean Basin. The highest number of newly described species in those areas indicates that further monitoring efforts are required to ensure the aquatic biodiversity is adequately known and managed within a context of growing human impacts in freshwater ecosystems.

Ramírez, F., V. Sbragaglia, K. Soacha, M. Coll, and J. Piera. 2022. Challenges for Marine Ecological Assessments: Completeness of Findable, Accessible, Interoperable, and Reusable Biodiversity Data in European Seas. Frontiers in Marine Science 8. https://doi.org/10.3389/fmars.2021.802235

The ongoing contemporary biodiversity crisis may result in much of ocean’s biodiversity to be lost or deeply modified without even being known. As the climate and anthropogenic-related impacts on marine systems accelerate, biodiversity knowledge integration is urgently required to evaluate and monit…