Science Enabled by Specimen Data
Lombardi, E. M., H. Faust, and H. E. Marx. 2024. Synthesizing historical plant collections to identify priorities for future collection efforts and research applications. Ecosphere 15. https://doi.org/10.1002/ecs2.70102
To understand how and where biodiversity is threatened, it is imperative to build historical baselines that accurately characterize the present and past states of biodiversity across environments. Botanical collections provide important ecological, evolutionary, and biogeographic information on the diversity and distributions of plant taxa, yet biases in collection efforts across spatial, temporal, and taxonomic scales are well known. Here, we characterize and quantify trends in botanical collections made from across different abiotic, biotic, and sociopolitical boundaries within the present‐day state of New Mexico. Using a biodiversity informatics approach applied toward a regional case study, we identify opportunities for efficiently improving natural history collection coverage and analyses of botanical diversity. Accurate representation of botanical biodiversity, preserved for future generations through vouchered plant specimens deposited in herbaria, depends on collection decisions made now. This work aims to provide a useful workflow for synthesizing digitized regional botanical collections as researchers prioritize current and future resources in the face of global change.
Villastrigo, A., A. Lam, M. H. Van Dam, A. Scheunert, J. Hájek, L. Hendrich, M. C. Michat, et al. 2025. Plate tectonics, cold adaptation and long-distance range expansion to remote archipelagos and the high Andes as drivers of a circumantarctic freshwater arthropod radiation. Molecular Phylogenetics and Evolution 204: 108279. https://doi.org/10.1016/j.ympev.2024.108279
Disjunct distributions, characterised by spatially separated populations of related species, offer insights into historical biogeographic patterns and evolutionary processes. This study investigates the evolutionary history of the diving beetle subfamily Lancetinae through a phylogenomic approach incorporating ultraconserved elements (UCEs) and heritage genetic markers. Our findings support an early Miocene origin for Lancetinae, with subsequent diversification influenced by historical vicariance events and long-distance dispersal. The divergence from the closely related subfamily Coptotominae in the late Cretaceous is not consistent with a Gondwanan origin, although highlights a likely Pangean origin for these taxa. This research underscores the significant impact of Gondwanan fragmentation on biogeographic patterns and highlights the remarkable dispersal capabilities of Lancetinae beetles.
Hagelstam-Renshaw, C., J. J. Ringelberg, C. Sinou, W. Cardinal-McTeague, and A. Bruneau. 2024. Biome evolution in subfamily Cercidoideae (Leguminosae): a tropical arborescent clade with a relictual depauperate temperate lineage. Brazilian Journal of Botany 48. https://doi.org/10.1007/s40415-024-01058-z
Some plant lineages remain within the same biome over time (biome conservatism), whereas others seem to adapt more easily to new biomes. The c. 398 species (14 genera) of subfamily Cercidoideae (Leguminosae or Fabaceae) are found in many biomes around the world, particularly in the tropical regions of South America, Asia and Africa, and display a variety of growth forms (small trees, shrubs, lianas and herbaceous perennials). Species distribution maps derived from cleaned occurrence records were compiled and compared with existing biome maps and with the literature to assign species to biomes. Rainforest (144 species), succulent (44 species), savanna (36 species), and temperate (10 species) biomes were found to be important in describing the global distribution of Cercidoideae, with many species occurring in more than one biome. Two phylogenetically isolated species-poor temperate ( Cercis ) and succulent ( Adenolobus ) biome lineages are sister to two broadly distributed species-rich tropical clades. Ancestral state reconstructions on a time-calibrated phylogeny suggest biome shifts occurred throughout the evolutionary history of the subfamily, with shifts between the succulent and rainforest biomes, from the rainforest to savanna, from the succulent to savanna biome, and one early occurring shift into (or from) the temperate biome. Of the 26 inferred shifts in biome, three are closely associated with a shift from the ancestral tree/shrub growth form to a liana or herbaceous perennial habit. Only three of the 13 inferred transcontinental dispersal events are associated with biome shifts. Overall, we find that biome shifts tend to occur within the same continent and that dispersals to new continents tend to occur within the same biome, but that nonetheless the biome-conserved and biogeographically structured Cercidoideae have been able to adapt to different environments through time.
Yang, M., Y. Qi, X. Xian, N. Yang, L. Xue, C. Zhang, H. Bao, and W. Liu. 2025. Coupling phylogenetic relatedness and distribution patterns provides insights into sandburs invasion risk assessment. Science of The Total Environment 958: 177819. https://doi.org/10.1016/j.scitotenv.2024.177819
Invasive sandburs (Cenchrus spp.), tropical and subtropical plants, are preferred in grasslands and agricultural ecosystems worldwide, causing significant crop production losses and reducing native biodiversity. Integrating phylogenetic relatedness and potentially suitable habitats (PSHs) to identify areas at risk of invasion is critical for prioritizing management efforts and supporting decisions on early warning and surveillance for sandbur invasions. However, despite risk assessments for individual Cenchrus species, the combined analysis of suitable habitats and phylogenetic relationships remains unclear. Therefore, this study aims to assess the invasion risk regions—including PSHs, species richness (SR), and phylogenetic structure—of eight invasive and potentially invasive sandburs in China, to quantify their niche overlap and identify driving factors. Our results showed that the phylogenetic distance of potentially invasive sandburs was closely related to invasive sandburs. Especially, three potentially invasive sandburs, C. ciliaris, C. setigerus, and C. myosuroides, possessed invasion potential resulting from close phylogenetic relatedness and high climatic suitability compared with invasive sandburs. The PSHs for invasive sandburs were distributed in wider regions except northwest China and had higher suitability to different environmental conditions. Potentially invasive sandburs were primarily located in southwestern and southern China driven by precipitation, especially, being inspected in Guangdong, Hainan, and Yunnan on numerous occasions, or potentially introduced in Guangxi, Taiwan, and Fujian for sandburs invasion hotspots. The phylogenetic clustering for eight sandburs occurred in the eastern, center, and southern coastal China, where higher SR in distribution was correlated with invasion hotspots. The SR and phylogenetic relatedness metrics were related to temperature and topographic variables. Totally, the expansion and invasion risk could be increased toward higher latitudes under future global warming. These findings offer novel insights for the prevention and management of sandburs invasions.
Wu, D., C. Liu, F. S. Caron, Y. Luo, M. R. Pie, M. Yu, P. Eggleton, and C. Chu. 2024. Habitat fragmentation drives pest termite risk in humid, but not arid, biomes. One Earth 7: 2049–2062. https://doi.org/10.1016/j.oneear.2024.10.003
Predicting global change effects poses significant challenges due to the intricate interplay between climate change and anthropogenic stressors in shaping ecological communities and their function, such as pest outbreak risk. Termites are ecosystem engineers, yet some pest species are causing worldwide economic losses. While habitat fragmentation seems to drive pest-dominated termite communities, its interaction with climate change effect remains unknown. We test whether climate and habitat fragmentation interactively alter interspecific competition that may limit pest termite risk. Leveraging global termite co-occurrence including 280 pest species, we found that competitively superior termite species (e.g., large bodied) increased in large and continuous habitats solely at high precipitation. While competitive species suppressed pest species globally, habitat fragmentation drove pest termite risk only in humid biomes. Unfortunately, hu- mid tropics have experienced vast forest fragmentation and rainfall reduction over the past decades. These stressors, if not stopped, may drive pest termite risk, potentially via competitive release.
Pilliod, D. S., M. I. Jeffries, R. S. Arkle, and D. H. Olson. 2024. Climate Futures for Lizards and Snakes in Western North America May Result in New Species Management Issues. Ecology and Evolution 14. https://doi.org/10.1002/ece3.70379
We assessed changes in fundamental climate‐niche space for lizard and snake species in western North America under modeled climate scenarios to inform natural resource managers of possible shifts in species distributions. We generated eight distribution models for each of 130 snake and lizard species in western North America under six time‐by‐climate scenarios. We combined the highest‐performing models per species into a single ensemble model for each scenario. Maps were generated from the ensemble models to depict climate‐niche space for each species and scenario. Patterns of species richness based on climate suitability and niche shifts were calculated from the projections at the scale of the entire study area and individual states and provinces, from Canada to Mexico. Squamate species' climate‐niche space for the recent‐time climate scenario and published known ranges were highly correlated (r = 0.81). Overall, reptile climate‐niche space was projected to move northward in the future. Sixty‐eight percent of species were projected to expand their current climate‐niche space rather than to shift, contract, or remain stable. Only 8.5% of species were projected to lose climate‐niche space in the future, and these species primarily occurred in Mexico and the southwestern U.S. We found few species were projected to lose all suitable climate‐niche space at the state or province level, although species were often predicted to occupy novel areas, such as at higher elevations. Most squamate species were projected to increase their climate‐niche space in future climate scenarios. As climate niches move northward, species are predicted to cross administrative borders, resulting in novel conservation issues for local landowners and natural resource agencies. However, information on species dispersal abilities, landscape connectivity, biophysical tolerances, and habitat suitability is needed to contextualize predictions relative to realized future niche expansions.
Giulian, J., B. N. Danforth, and J. G. Kueneman. 2024. A Large Aggregation of Melissodes bimaculatus (Hymenoptera: Apidae) Offers Perspectives on Gregarious Nesting and Pollination Services. Northeastern Naturalist 31. https://doi.org/10.1656/045.031.0314
From the largest nesting aggregation ever recorded for the genus Melissodes, we took diverse bionomic measurements of Melissodes bimaculatus (Two-spotted Longhorn Bee). Our results show a protandrous reproductive strategy occurring from July through August in New York. We observed parasitism by the kleptoparasitic bee Triepeolus simplex as well as nest-architecture modifications to ease this burden that support the selfish-herd hypothesis. In this population, we also found a proclivity for grass (Poaceae) pollen, a previously undocumented diet preference for Two-spotted Longhorn Bees. We further showed that this bee species has widespread climatically suitable habitat, with expected range expansion under future climate conditions. Altogether, our results offer novel insights into the ecology of theTwo-spotted Longhorn Bee and its gregarious nesting behavior.
Shirey, V., and J. Rabinovich. 2024. Climate change-induced degradation of expert range maps drawn for kissing bugs (Hemiptera: Reduviidae) and long-standing current and future sampling gaps across the Americas. Memórias do Instituto Oswaldo Cruz 119. https://doi.org/10.1590/0074-02760230100
BACKGROUND Kissing bugs are the vectors of Trypanosoma cruzi, the etiological agent of Chagas disease (CD). Despite their epidemiological relevance, kissing bug species are under sampled in terms of their diversity and it is unclear what biases exist in available kissing bug data. Under climate change, range maps for kissing bugs may become less accurate as species shift their ranges to track climatic tolerance. OBJECTIVES Quantify inventory completeness in available kissing bug data. Assess how well range maps are at conveying information about current distributions and potential future distributions subject to shift under climate change. Intersect forecasted changes in kissing bug distributions with contemporary sampling gaps to identify regions for future sampling of the group. Identify whether a phylogenetic signal is present in expert range knowledge as more closely related species may be similarly well or lesser understood. METHODS We used species distribution models (SDM), specifically constructed from Bayesian additive regression trees, with Bioclim variables, to forecast kissing bug distributions into 2100 and intersect these with current sampling gaps to identify priority regions for sampling. Expert range maps were assessed by the agreement between the expert map and SDM generated occurrence probability. We used classical hypothesis testing methods as well as tests of phylogenetic signal to meet our objectives. FINDINGS Expert range maps vary in their quality of depicting current kissing bug distributions. Most expert range maps decline in their ability to convey information about kissing bug occurrence over time, especially in under sampled areas. We found limited evidence for a phylogenetic signal in expert range map performance. MAIN CONCLUSIONS Expert range maps are not a perfect account of species distributions and may degrade in their ability to accurately convey distribution knowledge under future climates. We identify regions where future sampling of kissing bugs will be crucial for completing biodiversity inventories.
Saunders, T. C., I. Larridon, W. J. Baker, R. L. Barrett, F. Forest, E. Françoso, O. Maurin, et al. 2024. Tangled webs and spider‐flowers: Phylogenomics, biogeography, and seed morphology inform the evolutionary history of Cleomaceae. American Journal of Botany 111. https://doi.org/10.1002/ajb2.16399
Premise Cleomaceae is an important model clade for studies of evolutionary processes including genome evolution, floral form diversification, and photosynthetic pathway evolution. Diversification and divergence patterns in Cleomaceae remain tangled as research has been restricted by its worldwide distribution, limited genetic sampling and species coverage, and a lack of definitive fossil calibration points.MethodsWe used target sequence capture and the Angiosperms353 probe set to perform a phylogenetic study of Cleomaceae. We estimated divergence times and biogeographic analyses to explore the origin and diversification of the family. Seed morphology across extant taxa was documented with multifocal image‐stacking techniques and morphological characters were extracted, analyzed, and compared to fossil records.ResultsWe recovered a well‐supported and resolved phylogenetic tree of Cleomaceae generic relationships that includes 236 (~86%) species. We identified 11 principal clades and confidently placed Cleomella as sister to the rest of the family. Our analyses suggested that Cleomaceae and Brassicaceae diverged ~56 mya, and Cleomaceae began to diversify ~53 mya in the Palearctic and Africa. Multiple transatlantic disjunct distributions were identified. Seeds were imaged from 218 (~80%) species in the family and compared to all known fossil species.ConclusionsOur results represent the most comprehensive phylogenetic study of Cleomaceae to date. We identified transatlantic disjunctions and proposed explanations for these patterns, most likely either long‐distance dispersals or contractions in latitudinal distributions caused by climate change over geological timescales. We found that seed morphology varied considerably but mostly mirrored generic relationships.
Marchuk, E. A., A. K. Kvitchenko, L. A. Kameneva, A. A. Yuferova, and D. E. Kislov. 2024. East Asian forest-steppe outpost in the Khanka Lowland (Russia) and its conservation. Journal of Plant Research 137: 997–1018. https://doi.org/10.1007/s10265-024-01570-z
The Khanka Lowland forest-steppe is the most eastern outpost of the Eurasian steppe biome. It includes unique grassland plant communities with rare steppe species. These coenosis have changed under the influence of anthropogenic activity, especially during the last 100 years and included both typical steppe species and nemoral mesophytic species. To distinguish these ecological groups of plants the random forest method with three datasets of environmental variables was applied. Specifically, a model of classification with the most important bioindices to predict a mesophytic ecological group of plants with a sensitivity greater than 80% was constructed. The data demonstrated the presence of steppe species that arrived at different times in the Primorye Territory. Most of these species are associated with the Mongolian-Daurian relict steppe complex and habit in the Khanka Lowland. Other species occur only in mountains in Primorye Territory and do not persist in the Khanka Lowland. These findings emphasize the presence of relict steppe communities with a complex of true steppe species in the Khanka Lowland. Steppe communities exhibit features of anthropogenic influence definitely through the long land use period but are not anthropogenic in origin. The most steppe species are located at the eastern border of distribution in the Khanka Lowlands and are valuable in terms of conservation and sources of information about steppe species origin and the emergence of the steppe biome as a whole.