Science Enabled by Specimen Data

Oegelund Nielsen, R., da Silva, R., Juergens, J., Staerk, J., Lindholm Sørensen, L., Jackson, J., … Conde, D. A. (2020). Standardized data to support conservation prioritization for sharks and batoids (Elasmobranchii). Data in Brief, 33, 106337. doi:10.1016/j.dib.2020.106337 https://doi.org/10.1016/j.dib.2020.106337

#N/A

Li, X., Li, B., Wang, G., Zhan, X., & Holyoak, M. (2020). Deeply digging the interaction effect in multiple linear regressions using a fractional-power interaction term. MethodsX, 7, 101067. doi:10.1016/j.mex.2020.101067 https://doi.org/10.1016/j.mex.2020.101067

In multiple regression Y ~ β0 + β1X1 + β2X2 + β3X1 X2 + ɛ., the interaction term is quantified as the product of X1 and X2. We developed fractional-power interaction regression (FPIR), using βX1M X2N as the interaction term. The rationale of FPIR is that the slopes of Y-X1 regression along the X2 gr…

Sharifian, S., Kamrani, E., & Saeedi, H. (2020). Global biodiversity and biogeography of mangrove crabs: Temperature, the key driver of latitudinal gradients of species richness. Journal of Thermal Biology, 92, 102692. doi:10.1016/j.jtherbio.2020.102692 https://doi.org/10.1016/j.jtherbio.2020.102692

Mangroves are ideal habitat for a variety of marine species especially brachyuran crabs as the dominant macrofauna. However, the global distribution, endemicity, and latitudinal gradients of species richness in mangrove crabs remains poorly understood. Here, we assessed whether species richness of m…

Aguiar, L. M. S., Pereira, M. J. R., Zortéa, M., & Machado, R. B. (2020). Where are the bats? An environmental complementarity analysis in a megadiverse country. Diversity and Distributions. doi:10.1111/ddi.13137 https://doi.org/10.1111/ddi.13137

Aim: Field surveys are necessary to overcome Wallacean shortfalls. The task is even more important when human pressure on tropical—megadiverse—ecosystems is considered. However, due to financial constraints, spatial and temporal prioritization is required. Here, we used the concept of environmental …

Hastings, R. A., Rutterford, L. A., Freer, J. J., Collins, R. A., Simpson, S. D., & Genner, M. J. (2020). Climate Change Drives Poleward Increases and Equatorward Declines in Marine Species. Current Biology. doi:10.1016/j.cub.2020.02.043 https://doi.org/10.1016/j.cub.2020.02.043

Marine environments have increased in temperature by an average of 1°C since pre-industrial (1850) times [1]. Given that species ranges are closely allied to physiological thermal tolerances in marine organisms [2], it may therefore be expected that ocean warming would lead to abundance increases at…

Avila, C., Angulo-Preckler, C., Martín-Martín, R. P., Figuerola, B., Griffiths, H. J., & Waller, C. L. (2020). Invasive marine species discovered on non–native kelp rafts in the warmest Antarctic island. Scientific Reports, 10(1). doi:10.1038/s41598-020-58561-y https://doi.org/10.1038/s41598-020-58561-y

Antarctic shallow coastal marine communities were long thought to be isolated from their nearest neighbours by hundreds of kilometres of deep ocean and the Antarctic Circumpolar Current. The discovery of non–native kelp washed up on Antarctic beaches led us to question the permeability of these barr…

Vaz, E., & Penfound, E. (2020). Mars Terraforming: A Geographic Information Systems Framework. Life Sciences in Space Research, 24, 50–63. doi:10.1016/j.lssr.2019.12.001 https://doi.org/10.1016/j.lssr.2019.12.001

This study has developed a GIS framework that uses spatial environmental and climate data to better understand areas on Earth that share the most environmental similarities to Mars. The purpose of developing this framework is to determine which vegetation is most likely to survive in closed bioregen…

Menegotto, A., Rangel, T. F., Schrader, J., Weigelt, P., & Kreft, H. (2019). A global test of the subsidized island biogeography hypothesis. Global Ecology and Biogeography. doi:10.1111/geb.13032 https://doi.org/10.1111/geb.13032

Aim: The decreasing capacity of area to predict species richness on small islands (the small‐island effect; SIE) seems to be one of the few exceptions of the species–area relationship. While most studies have focused on how to detect the SIE, the underlying ecological factors determining this patter…

Ewers‐Saucedo, C., & Pappalardo, P. (2019). Testing adaptive hypotheses on the evolution of larval life history in acorn and stalked barnacles. Ecology and Evolution. doi:10.1002/ece3.5645 https://doi.org/10.1002/ece3.5645

Despite strong selective pressure to optimize larval life history in marine environments, there is a wide diversity with regard to developmental mode, size, and time larvae spend in the plankton. In the present study, we assessed if adaptive hypotheses explain the distribution of the larval life his…

Rankin, A.M., R.S. Schwartz, C.H. Floyd, and K.E. Galbreath. (2019). Contrasting consequences of historical climate change for marmots at northern and temperate latitudes. Journal of Mammalogy. doi:10.3897/zookeys.830.31490 https://doi.org/10.1093/jmammal/gyz025

Many species that occupy high latitudes of North America were historically restricted to relatively small refugia during the Last Glacial Maximum (LGM). The geographic ranges of many of these species then expanded widely across the continent after glacial ice receded. In contrast, species whose LGM …