Science Enabled by Specimen Data
Hamer, M., M. Kgatla, and B. Petersen. 2023. An assessment of collection specimen data for South African mountain plants and invertebrates. Transactions of the Royal Society of South Africa: 1–19. https://doi.org/10.1080/0035919x.2023.2200742
South Africa is considered a megadiverse country, with exceptionally high plant and relatively high animal species richness and endemism. The country’s species have been surveyed and studied for over 200 years, resulting in extensive natural science collections and a vast number of scientific papers and books. This study assessed whether existing data portals provide access to occurrence data and investigated the extent of the data in Global Biodiversity Information Facility and its completeness for plants and selected invertebrate taxa. The main focus was preserved specimen data, but some observation data from iNaturalist were also considered for selected analyses. Records that include species-level identification and co-ordinates were mapped in QGIS to show the coverage of collection localities across the country. The records that fall within the mountain range spatial layer were then extracted and counted to identify density of records per mountain range for various taxa. Forty percent of plant records are from mountain localities, and the Atlantic Cape Fold Mountains had the highest density of records. Table Mountain has been extensively collected for plants and invertebrates. A large proportion of the records for invertebrates lacked species-level identification and co-ordinates, resulting in a low number of records for analyses. The accessible data are only a relatively small subset of existing collections, and digitisation and data upgrading is considered a high priority before collecting gaps can be addressed by targeted surveys.
Xu, X.-T., J. Szwedo, D.-Y. Huang, W.-Y.-D. Deng, M. Obroślak, F.-X. Wu, and T. Su. 2022. A New Genus of Spittlebugs (Hemiptera, Cercopidae) from the Eocene of Central Tibetan Plateau. Insects 13: 770. https://doi.org/10.3390/insects13090770
The superfamily Cercopoidea is commonly named as “spittlebugs”, as its nymphs produce a spittle mass to protect themselves. Cosmoscartini (Cercopoidea: Cercopidae) is a large and brightly colored Old World tropical tribe, including 11 genera. A new genus Nangamostethos gen. nov. (type species: Nangamostethostibetense sp. nov.) of Cosmoscartini is described from Niubao Formation, the late Eocene of central Tibetan Plateau (TP), China. Its placement is ensured by comparison with all the extant genera of the tribe Cosmoscartini. The new fossil represents one of few fossil Cercopidae species described from Asia. It is likely that Nangamostethos was extinct from the TP due to the regional aridification and an overturn of plant taxa in the late Paleogene.
Sánchez, C. A., H. Li, K. L. Phelps, C. Zambrana-Torrelio, L.-F. Wang, P. Zhou, Z.-L. Shi, et al. 2022. A strategy to assess spillover risk of bat SARS-related coronaviruses in Southeast Asia. Nature Communications 13. https://doi.org/10.1038/s41467-022-31860-w
Emerging diseases caused by coronaviruses of likely bat origin (e.g., SARS, MERS, SADS, COVID-19) have disrupted global health and economies for two decades. Evidence suggests that some bat SARS-related coronaviruses (SARSr-CoVs) could infect people directly, and that their spillover is more frequent than previously recognized. Each zoonotic spillover of a novel virus represents an opportunity for evolutionary adaptation and further spread; therefore, quantifying the extent of this spillover may help target prevention programs. We derive current range distributions for known bat SARSr-CoV hosts and quantify their overlap with human populations. We then use probabilistic risk assessment and data on human-bat contact, human viral seroprevalence, and antibody duration to estimate that a median of 66,280 people (95% CI: 65,351–67,131) are infected with SARSr-CoVs annually in Southeast Asia. These data on the geography and scale of spillover can be used to target surveillance and prevention programs for potential future bat-CoV emergence. Coronaviruses may spill over from bats to humans. This study uses epidemiological data, species distribution models, and probabilistic risk assessment to map overlap among people and SARSr-CoV bat hosts and estimate how many people are infected with bat-origin SARSr-CoVs in Southeast Asia annually.
Cooper, N., A. L. Bond, J. L. Davis, R. Portela Miguez, L. Tomsett, and K. M. Helgen. 2019. Sex biases in bird and mammal natural history collections. Proceedings of the Royal Society B: Biological Sciences 286: 20192025. https://doi.org/10.1098/rspb.2019.2025
Natural history specimens are widely used across ecology, evolutionary biology and conservation. Although biological sex may influence all of these areas, it is often overlooked in large-scale studies using museum specimens. If collections are biased towards one sex, studies may not be representativ…