Bionomia will be offline 2025-04-20 12:00 UTC for 1 hr to refresh data from the Global Biodiversity Information Facility.

Science Enabled by Specimen Data

Munna, A. H., N. A. Amuri, P. Hieronimo, and D. A. Woiso. 2023. Modelling ecological niches of Sclerocarya birrea subspecies in Tanzania under the current and future climates. Silva Fennica 57. https://doi.org/10.14214/sf.23009

The information on ecological niches of the Marula tree, Sclerocarya birrea (A. Rich.) Horchst. subspecies are needed for sustainable management of this tree, considering its nutritional, economic, and ecological benefits. However, despite Tanzania being regarded as a global genetic center of diversity of S. birrea, information on the subspecies ecological niches is lacking. We aimed to model ecological niches of S. birrea subspecies in Tanzania under the current and future climates. Ecological niches under the current climate were modelled by using ecological niche models in MaxEnt using climatic, edaphic, and topographical variables, and subspecies occurrence data. The Hadley Climate Center and National Center for Atmospheric Research's Earth System Models were used to predict ecological niches under the medium and high greenhouse gases emission scenarios for the years 2050 and 2080. Area under the curves (AUCs) were used to assess the accuracy of the models. The results show that the models were robust, with AUCs of 0.85–0.95. Annual and seasonal precipitation, elevation, and soil cation exchange capacity are the key environmental factors that define the ecological niches of the S. birrea subspecies. Ecological niches of subsp. caffra, multifoliata, and birrea are currently found in 30, 22, and 21 regions, and occupy 184 814 km2, 139 918 km2, and 28 446 km2 of Tanzania's land area respectively, which will contract by 0.4–44% due to climate change. Currently, 31–51% of ecological niches are under Tanzania’s protected areas network. The findings are important in guiding the development of conservation and domestication strategies for the S. birrea subspecies in Tanzania.

Lopes, D., E. de Andrade, A. Egartner, F. Beitia, M. Rot, C. Chireceanu, V. Balmés, et al. 2023. FRUITFLYRISKMANAGE: A Euphresco project for Ceratitis capitata Wiedemann (Diptera: Tephritidae) risk management applied in some European countries. EPPO Bulletin. https://doi.org/10.1111/epp.12922

Ceratitis capitata (Wiedemann), the Mediterranean fruit fly or medfly, is one of the world's most serious threats to fresh fruits. It is highly polyphagous (recorded from over 300 hosts) and capable of adapting to a wide range of climates. This pest has spread to the EPPO region and is mainly present in the southern part, damaging Citrus and Prunus. In Northern and Central Europe records refer to interceptions or short‐lived adventive populations only. Sustainable programs for surveillance, spread assessment using models and control strategies for pests such as C. capitata represent a major plant health challenge for all countries in Europe. This article includes a review of pest distribution and monitoring techniques in 11 countries of the EPPO region. This work compiles information that was crucial for a better understanding of pest occurrence and contributes to identifying areas susceptible to potential invasion and establishment. The key outputs and results obtained in the Euphresco project included knowledge transfer about early detection tools and methods used in different countries for pest monitoring. A MaxEnt software model resulted in risk maps for C. capitata in different climatic regions. This is an important tool to help decision making and to develop actions against this pest in the different partner countries.

Onditi, K. O., W. Song, X. Li, S. Musila, Z. Chen, Q. Li, J. Mathenge, et al. 2023. Untangling key abiotic predictors of terrestrial mammal diversity patterns across ecoregions and species groups in Kenya. Ecological Indicators 154: 110595. https://doi.org/10.1016/j.ecolind.2023.110595

Understanding the interactions between abiotic (environmental and anthropogenic) factors and species diversity and distribution patterns is fundamental to improving the ecological representativeness of biodiversity management tools such as protected areas (PAs). However, significant knowledge gaps remain about how species’ ecological and evolutionary opportunities are associated with abiotic factors, especially in biodiversity-rich but economically ill-equipped countries such as Kenya. Here, we explored the interactions of terrestrial mammal diversity patterns and abiotic factors across species groups and ecoregions in Kenya. We coupled data on terrestrial mammal occurrences, phylogeny, functional traits, and environmental predictors in Kenya to derive multiple diversity indices, encompassing species richness and phylogenetic and functional richness, and mean pairwise and nearest taxon distances. We explored the interactions of these indices with several abiotic factors using multivariate regression analyses while adjusting for spatial autocorrelation. The results showed weak correlations between species richness versus the phylogenetic and functional diversity indices. The best-fit models explained variable proportions of diversity indices between species groups and ecoregions and consistently retained annual temperature and precipitation averages and seasonality and human footprint as the strongest predictors. Compared to the species-poor xeric northern and eastern Kenya regions, the predictors had weak associations with diversity variances in the species-rich mesic western and central Kenya regions, similar to focal species groups compared to ordinal classifications and the combined species pool. These findings illustrate that climate and human footprint interplay determine multiple facets of terrestrial mammal diversity patterns in Kenya. Accordingly, curbing human activities degrading long-term climatic regimes is vital to ensuring the ecological integrity of terrestrial mammal communities and should be integrated into biodiversity management frameworks. For a holistic representation of critical conservation areas, biodiversity managements should also prioritize terrestrial mammal phylogenetic and functional attributes besides species richness.

Bento, M., H. Niza, A. Cartaxana, S. Bandeira, J. Paula, and A. M. Correia. 2023. Mind the Gaps: Taxonomic, Geographic and Temporal Data of Marine Invertebrate Databases from Mozambique and São Tomé and Príncipe. Diversity 15: 70. https://doi.org/10.3390/d15010070

One of the best ways to share and disseminate biodiversity information is through the digitization of data and making it available via online databases. The rapid growth of publicly available biodiversity data is not without problems which may decrease the utility of online databases. In this study we analyze taxonomic, geographic and temporal data gaps, and bias related to existing data on selected marine invertebrate occurrences along the coastline of two African countries, Mozambique and São Tomé and Príncipe. The final marine invertebrate dataset comprises of 19.910 occurrences, but 32% of the original dataset occurrences were excluded due to data gaps. Most marine invertebrates in Mozambique were collected in seagrasses, whereas in São Tomé and Príncipe they were mostly collected offshore. The dataset has a temporal coverage from 1816 to 2019, with most occurrences collected in the last two decades. This study provides baseline information relevant to a better understanding of marine invertebrate biodiversity data gaps and bias in these habitats along the coasts of these countries. The information can be further applied to complete marine invertebrate data gaps contributing to design informed sampling strategies and advancing refined datasets that can be used in management and conservation plans in both countries.

Zhang, Q., J. Ye, C. Le, D. M. Njenga, N. R. Rabarijaona, W. O. Omollo, L. Lu, et al. 2022. New insights into the formation of biodiversity hotspots of the Kenyan flora. Diversity and Distributions. https://doi.org/10.1111/ddi.13624

Aim This study aimed to investigate the distribution patterns of plant diversity in Kenya, how climatic fluctuations and orogeny shaped them, and the formation of its β-diversity. Location Kenya, East Africa. Taxon Angiosperms. Methods We quantified patterns of turnover and nestedness components of phylogenetic β-diversity for angiosperm species among neighbouring sites using a well-resolved phylogenetic tree and extensive distribution records from public databases and other published sources. We applied clustering methods to delineate biota based on pairwise similarities among multiple sites and used a random assembly null model to assess the effects of species abundance distribution on phylogenetic β-diversity. Results The phylogenetic turnover of the Kenyan flora, intersecting with the biodiversity hotspots Eastern Afromontane, Coastal Forests of Eastern Africa, and Horn of Africa, shows a non-monotonic pattern along a latitudinal gradient that is strongly structured into volcanic and coastal areas. The other areas are mainly dominated by phylogenetic nestedness, even in the eastern part of the equatorial region parallel to the volcanic area. Phylogenetic diversity and phylogenetic structure analyses explain the mechanism of the observed phylogenetic turnover and nestedness patterns. We identified five phytogeographical regions in Kenya: the Mandera, Turkana, Volcanic, Pan Coastal and West Highland Regions. Conclusions Variations in turnover gradient and coexistence are highly dependent on the regional biogeographical history resulting from climatic fluctuations and long-lasting orogeny, which jointly shaped the biodiversity patterns of the Kenyan flora. The nestedness component dominated climatically unstable regions and is presumed to have been caused by heavy local species extinction and recolonization from the Volcanic Region. The high turnover component in climatically stable regions may have preserved old lineages and the prevalence of endemic species within narrow ranges.

Niza, H., M. Bento, L. Lopes, A. Cartaxana, and A. Correia. 2021. A picture is worth a thousand words: using digital tools to visualise marine invertebrate diversity data along the coasts of Mozambique and São Tomé & Príncipe. Biodiversity Data Journal 9. https://doi.org/10.3897/bdj.9.e68817

The amount of biological data available in online repositories is increasing at an exponential rate. However, data on marine invertebrate biodiversity resources from Mozambique and São Tomé and Príncipe are still sparse and scattered. Online repositories are useful instruments for biodiversity resea…

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Chukwuma, D. M., and A. E. Ayodele. 2021. Wood micro-morphological characteristics of the Tribe Dalbergieae in Nigeria. Webbia 76: 295–306. https://doi.org/10.36253/jopt-11407

The present study examined the wood micro-characters of 18 species of the tribe Dalbergieae across 4 genera in Nigeria,  following previously described methods by other authors. The species are distributed across all geo-ecological zones of the country but more abundant in the southern area which is…

Nyairo, R., and T. Machimura. 2020. Potential Effects of Climate and Human Influence Changes on Range and Diversity of Nine Fabaceae Species and Implications for Nature’s Contribution to People in Kenya. Climate 8: 109. https://doi.org/10.3390/cli8100109

Climate and land-use changes are the main drivers of species distribution. On the basis of current and future climate and socioeconomic scenarios, species range projections were made for nine species in the Fabaceae family. Modeled species have instrumental and relational values termed as nature’s c…

Ringelberg, J. J., N. E. Zimmermann, A. Weeks, M. Lavin, and C. E. Hughes. 2020. Biomes as evolutionary arenas: Convergence and conservatism in the trans‐continental succulent biome A. Moles [ed.],. Global Ecology and Biogeography 29: 1100–1113. https://doi.org/10.1111/geb.13089

Aim: Historically, biomes have been defined based on their structurally and functionally similar vegetation, but there is debate about whether these similarities are superficial, and about how biomes are defined and mapped. We propose that combined assessment of evolutionary convergence of plant fun…