Science Enabled by Specimen Data

Mairal, M., Chown, S. L., Shaw, J., Chala, D., Chau, J. H., Hui, C., … Le Roux, J. J. (2021). Human activity strongly influences genetic dynamics of the most widespread invasive plant in the sub‐Antarctic. Molecular Ecology. doi:10.1111/mec.16045 https://doi.org/10.1111/mec.16045

The link between the successful establishment of alien species and propagule pressure is well-documented. Less known is how humans influence the post-introduction dynamics of invasive alien populations. The latter requires studying parallel invasions by the same species in habitats that are differen…

Mingou, P. A. B., Gueye, M., Abotsi, K. E., Bayet, T., Cambier, C., & Rouhan, G. (2021). Three new records of fern species (Polypodiopsida) in Senegal, from Dindefelo Falls, Kedougou region. Check List, 17(3), 923–930. doi:10.15560/17.3.923 https://doi.org/10.15560/17.3.923

Blotiella currorii (Hook.) R.M.Tryon. (Dennstaedtiaceae), Dicranopteris linearis (Burm.F.) Underw. (Gleicheniaceae), and Aleuritopteris farinosa (Forssk.) Fée (Pteridaceae) are reported for the first time in the flora of Senegal. They represent not only three more species but also two new fam…

Yudaputra, A., Fijridiyanto, I. A., Astuti, I. P., Zulkarnaen, R. N., Yuswandi, A., Witono, J. R., & Yuzammi, . (2021). Geographic Distribution Shift of Invasive Plant Austroeupatorium inulifolium in the Future Climate Projection. Annual Research & Review in Biology, 38–47. doi:10.9734/arrb/2021/v36i530373 https://doi.org/10.9734/arrb/2021/v36i530373

Aims: This study aims to predict the future geographic distribution shift of invasive plant species Austroeupathorium inulifolium as the impact of global climate change. Study Design: The rising temperature and precipitation change lead to the geographic distribution shift of organisms. A. inulifol…

O’Mahony, J., de la Torre Cerro, R., & Holloway, P. (2021). Modelling the Distribution of the Red Macroalgae Asparagopsis to Support Sustainable Aquaculture Development. AgriEngineering, 3(2), 251–265. doi:10.3390/agriengineering3020017 https://doi.org/10.3390/agriengineering3020017

Fermentative digestion by ruminant livestock is one of the main ways enteric methane enters the atmosphere, although recent studies have identified that including red macroalgae as a feed ingredient can drastically reduce methane produced by cattle. Here, we utilize ecological modelling to identify …

Jin, W.-T., Gernandt, D. S., Wehenkel, C., Xia, X.-M., Wei, X.-X., & Wang, X.-Q. (2021). Phylogenomic and ecological analyses reveal the spatiotemporal evolution of global pines. Proceedings of the National Academy of Sciences, 118(20), e2022302118. doi:10.1073/pnas.2022302118 https://doi.org/10.1073/pnas.2022302118

How coniferous forests evolved in the Northern Hemisphere remains largely unknown. Unlike most groups of organisms that generally follow a latitudinal diversity gradient, most conifer species in the Northern Hemisphere are distributed in mountainous areas at middle latitudes. It is of great interest…

Chauvel, B., Fried, G., Follak, S., Chapman, D., Kulakova, Y., Le Bourgeois, T., … Regnier, E. (2021). Monographs on invasive plants in Europe N° 5: Ambrosia trifida L. Botany Letters, 1–24. doi:10.1080/23818107.2021.1879674 https://doi.org/10.1080/23818107.2021.1879674

Ambrosia trifida L. (giant ragweed, Asteraceae) is native to the North American continent and was introduced into Europe and Asia at the end of the 19th century. In its native range, this tall annual species is common in riparian and ruderal habitats and is also a major weed in annual cropping syste…

Cahyaningsih, R., Magos Brehm, J., & Maxted, N. (2021). Gap analysis of Indonesian priority medicinal plant species as part of their conservation planning. Global Ecology and Conservation, 26, e01459. doi:10.1016/j.gecco.2021.e01459 https://doi.org/10.1016/j.gecco.2021.e01459

Indonesia is a country rich in medicinal plant biodiversity. The conservation and sustainable use of such species in Indonesia are critical because of incipient population growth, changing land usage, forest clearance, and climate change in a country where most of the population depends on tradition…

Pang, S. E. H., De Alban, J. D. T., & Webb, E. L. (2021). Effects of climate change and land cover on the distributions of a critical tree family in the Philippines. Scientific Reports, 11(1). doi:10.1038/s41598-020-79491-9 https://doi.org/10.1038/s41598-020-79491-9

Southeast Asian forests are dominated by the tree family Dipterocarpaceae, whose abundance and diversity are key to maintaining the structure and function of tropical forests. Like most biodiversity, dipterocarps are threatened by deforestation and climate change, so it is crucial to understand the …

Allstädt, F. J., Koutsodendris, A., Appel, E., Rösler, W., Reichgelt, T., Kaboth-Bahr, S., … Pross, J. (2021). Late Pliocene to early Pleistocene climate dynamics in western North America based on a new pollen record from paleo-Lake Idaho. Palaeobiodiversity and Palaeoenvironments. doi:10.1007/s12549-020-00460-1 https://doi.org/10.1007/s12549-020-00460-1

Marked by the expansion of ice sheets in the high latitudes, the intensification of Northern Hemisphere glaciation across the Plio/Pleistocene transition at ~ 2.7 Ma represents a critical interval of late Neogene climate evolution. To date, the characteristics of climate change in North America duri…

SETYAWAN, A. D., Supriatna, J., Nisyawati, Nursamsi, I., SUTARNO, S., SUGIYARTO, S., … INDRAWAN, M. (2020). Anticipated climate changes reveal shifting in habitat suitability of high-altitude selaginellas in Java, Indonesia. Biodiversitas Journal of Biological Diversity, 21(11). doi:10.13057/biodiv/d211157 https://doi.org/10.13057/biodiv/d211157

Anticipated climate changes reveal shifting in habitat suitability of high-altitude selaginellas in Java, Indonesia. Biodiversitas 21: 5482-5497. High-altitude ecosystems with humid and cool climate are the preferred habitat for some Selaginella species (selaginellas). Such habitats are available in…