Science Enabled by Specimen Data

Liu, S., S. Xia, D. Wu, J. E. Behm, Y. Meng, H. Yuan, P. Wen, et al. 2022. Understanding global and regional patterns of termite diversity and regional functional traits. iScience: 105538.

Our understanding of broad-scale biodiversity and functional trait patterns is largely based on plants, and relatively little information is available on soil arthropods. Here, we investigated the distribution of termite diversity globally and morphological traits and diversity across China. Our analyses showed increasing termite species richness with decreasing latitude at both the globally, and within-China. Additionally, we detected obvious latitudinal trends in the mean community value of termite morphological traits on average, with body size and leg length decreasing with increasing latitude. Furthermore, temperature, NDVI and water variables were the most important drivers controlling the variation in termite richness, and temperature and soil properties were key drivers of the geographic distribution of termite morphological traits. Our global termite richness map is one of the first high resolution maps for any arthropod group and especially given the functional importance of termites, our work provides a useful baseline for further ecological analysis.

Li, X., and J. J. Wiens. 2022. Estimating Global Biodiversity: the Role of Cryptic Insect Species. Systematic Biology.

Abstract How many species are there on Earth and to what groups do these species belong? These fundamental questions span systematics, ecology, and evolutionary biology. Yet, recent estimates of overall global biodiversity have ranged wildly, from the low millions to the trillions. Insects are a pivotal group for these estimates. Insects make up roughly half of currently described extant species (across all groups), with ~1 million described species. Insect diversity is also crucial because many other taxa have species that may be unique to each insect host species, including bacteria, apicomplexan protists, microsporidian fungi, nematodes, and mites. Several projections of total insect diversity (described and undescribed) have converged on ~6 million species. However, these projections have not incorporated the morphologically cryptic species revealed by molecular data. Here, we estimate the extent of cryptic insect diversity. We perform a systematic review of studies that used explicit species-delimitation methods with multi-locus data. We estimate that each morphology-based insect species contains (on average) 3.1 cryptic species. We then use these estimates to project the overall number of species on Earth and their distribution among major groups. Our estimates suggest that overall global biodiversity may range from 563 million to 2.2 billion species. [Biodiversity; cryptic species; insects; species delimitation; species richness]

Gil‐Tapetado, D., C. D. Soria, J. F. Gómez, J. M. Sesma, and F. J. Cabrero‐Sañudo. 2022. Aridity could have driven the local extinction of a common and multivoltine butterfly. Ecological Entomology.

Identifying which species are being negatively impacted by climate change and the mechanisms driving their decline is essential to effectively protect biodiversity.Coenonympha pamphilus is a common and generalist butterfly, widely distributed throughout the Western Palearctic, being multivoltine in southern Europe. Previous studies indicate that it will not be substantially affected by climate change; however, it has seemingly disappeared from the southeast of the Iberian Peninsula in the last decades.Here, we aim to determine if it has effectively disappeared from this area, as well as identify the environmental conditions limiting its distribution and the potential causes behind this a priori local extinction.We downloaded all the occurrence records of C. pamphilus and analysed their spatial and temporal trends. To identify the climatic variables driving the distribution of this butterfly in the Iberian Peninsula, we performed an ensemble species distribution model (SDM), combining 600 individual models produced with 6 algorithms.We confirmed that C. pamphilus has not been observed in the southeast of the Iberian Peninsula since 2008. Aridity was the main factor limiting the distribution of C. pamphilus in our ensemble SDM, with areas with high aridity being unsuitable for this species.We hypothesise that multivoltinism is the mechanism driving this local extirpation, as high aridity is causing host plants (Poaceae) to wither prematurely, precluding the development of the second and/or third generations of the butterfly. Even though generalist species are theoretically more resilient to climate change, other traits such as multivoltinism may increase their vulnerability and need to be further investigated.

Olszewski, P., M. K. Dyderski, Ł. Dylewski, P. Bogusch, C. Schmid-Egger, T. Ljubomirov, D. Zimmermann, et al. 2022. European beewolf (Philanthus triangulum) will expand its geographic range as a result of climate warming. Regional Environmental Change 22.

Climate change is an important driver of the spread of apiary pests and honeybee predators. These impact on one of the economically most important pollinators and thus pose serious threats to the functioning of both natural ecosystems and crops. We investigated the impact of the predicted climate change in the periods 2040–2060 and 2060–2080 on the potential distribution of the European beewolf Philanthus triangulum , a specialized honeybee predator. We modelled its potential distribution using the MaxEnt method based on contemporary occurrence data and bioclimatic variables. Our model had an overall good performance (AUC = 0.864) and the threshold of occurrence probability, assessed as the point with the highest sum of sensitivity and specificity, was at 0.533. Annual temperature range (69.5%), mean temperature in the warmest quarter (12.4%), and precipitation in the warmest quarter (7.9%) were the principal bioclimatic variables significantly affecting the potential distribution of the European beewolf. We predicted the potential distribution shifts within two scenarios (optimistic RPC4.5 and pessimistic RCP8.5) and three Global Circulation Models (HadGEM2-ES, IPSL-CM5A-LR, and MPI-SM-LR). Both optimistic and pessimistic scenarios showed that climate change will significantly increase the availability of European beewolf potential niches. Losses of potential niches will only affect small areas in southern Europe. Most of the anticipated changes for the period 2060–2080 will already have occurred in 2040–2060. The predicted range expansion of European beewolf suggests that occurrence and abundance of this species should be monitored.

Ittonen, M., A. Hagelin, C. Wiklund, and K. Gotthard. 2022. Local adaptation to seasonal cues at the fronts of two parallel, climate‐induced butterfly range expansions. Ecology Letters 25: 2022–2033.

Climate change allows species to expand polewards, but non‐changing environmental features may limit expansions. Daylength is unaffected by climate and drives life cycle timing in many animals and plants. Because daylength varies over latitudes, poleward‐expanding populations must adapt to new daylength conditions. We studied local adaptation to daylength in the butterfly Lasiommata megera, which is expanding northwards along several routes in Europe. Using common garden laboratory experiments with controlled daylengths, we compared diapause induction between populations from the southern‐Swedish core range and recently established marginal populations from two independent expansion fronts in Sweden. Caterpillars from the northern populations entered diapause in clearly longer daylengths than those from southern populations, with the exception of caterpillars from one geographically isolated population. The northern populations have repeatedly and rapidly adapted to their local daylengths, indicating that the common use of daylength as seasonal cue need not strongly limit climate‐induced insect range expansions.

Li, D., Z. Li, Z. Liu, Y. Yang, A. G. Khoso, L. Wang, and D. Liu. 2022. Climate change simulations revealed potentially drastic shifts in insect community structure and crop yields in China’s farmland. Journal of Pest Science.

Climate change will cause drastic fluctuations in agricultural ecosystems, which in turn may affect global food security. We used ecological niche modeling to predict the potential distribution for four cereal aphids (i.e., Sitobion avenae, Rhopalosiphum padi, Schizaphis graminum, and Diurphis noxia…

Kolanowska, M. 2021. The future of a montane orchid species and the impact of climate change on the distribution of its pollinators and magnet species. Global Ecology and Conservation 32: e01939.

The aim of this study was to evaluate the impact of global warming on suitable niches of montane orchid, Traunsteinera globosa, using ecological niche modelling approach. Additionally, the effect of various climate change scenarios on future changes in the distribution and overlap of the orchid magn…

Schneider, K., D. Makowski, and W. van der Werf. 2021. Predicting hotspots for invasive species introduction in Europe. Environmental Research Letters 16: 114026.

Plant pest invasions cost billions of Euros each year in Europe. Prediction of likely places of pest introduction could greatly help focus efforts on prevention and control and thus reduce societal costs of pest invasions. Here, we test whether generic data-driven risk maps of pest introduction, val…

Blanckenhorn, W. U., D. Berger, P. T. Rohner, M. A. Schäfer, H. Akashi, and R. J. Walters. 2021. Comprehensive thermal performance curves for yellow dung fly life history traits and the temperature-size-rule. Journal of Thermal Biology 100: 103069.

Ambient temperature strongly determines the behaviour, physiology, and life history of all organisms. The technical assessment of organismal thermal niches in form of now so-called thermal performance curves (TPC) thus has a long tradition in biological research. Nevertheless, several traits do not …

Maresova, J., A. Suchackova Bartonova, M. Konvicka, T. T. Høye, O. Gilg, J. Kresse, N. A. Shapoval, et al. 2020. The story of endurance: Biogeography and the evolutionary history of four Holarctic butterflies with different habitat requirements. Journal of Biogeography 48: 590–602.

Aim: Biogeographical studies on the entire ranges of widely distributed species can change our perception of species’ range dynamics. We studied the effects of Pleistocene glacial cycles on current butterfly species distributions, aiming to uncover complex biogeographic patterns in the Holarctic, a …