Science Enabled by Specimen Data

Campbell, L. C. E., E. T. Kiers, and G. Chomicki. 2022. The evolution of plant cultivation by ants. Trends in Plant Science.

Outside humans, true agriculture was previously thought to be restricted to social insects farming fungus. However, obligate farming of plants by ants was recently discovered in Fiji, prompting a re-examination of plant cultivation by ants. Here, we generate a database of plant cultivation by ants, identify three main types, and show that these interactions evolved primarily for shelter rather than food. We find that plant cultivation evolved at least 65 times independently for crops (~200 plant species), and 15 times in farmer lineages (~37 ant taxa) in the Neotropics and Asia/Australasia. Because of their high evolutionary replication, and variation in partner dependence, these systems are powerful models to unveil the steps in the evolution and ecology of insect agriculture.

Moreno, I., J. M. W. Gippet, L. Fumagalli, and P. J. Stephenson. 2022. Factors affecting the availability of data on East African wildlife: the monitoring needs of conservationists are not being met. Biodiversity and Conservation.

Understanding the status and abundance of species is essential for effective conservation decision-making. However, the availability of species data varies across space, taxonomic groups and data types. A case study was therefore conducted in a high biodiversity region—East Africa—to evaluate data biases, the factors influencing data availability, and the consequences for conservation. In each of the eleven target countries, priority animal species were identified as threatened species that are protected by national governments, international conventions or conservation NGOs. We assessed data gaps and biases in the IUCN Red List of Threatened Species, the Global Biodiversity Information Facility and the Living Planet Index. A survey of practitioners and decision makers was conducted to confirm and assess consequences of these biases on biodiversity conservation efforts. Our results showed data on species occurrence and population trends were available for a significantly higher proportion of vertebrates than invertebrates. We observed a geographical bias, with higher tourism income countries having more priority species and more species with data than lower tourism income countries. Conservationists surveyed felt that, of the 40 types of data investigated, those data that are most important to conservation projects are the most difficult to access. The main challenges to data accessibility are excessive expense, technological challenges, and a lack of resources to process and analyse data. With this information, practitioners and decision makers can prioritise how and where to fill gaps to improve data availability and use, and ensure biodiversity monitoring is improved and conservation impacts enhanced.

Ripley, B. S., S. L. Raubenheimer, L. Perumal, M. Anderson, E. Mostert, B. S. Kgope, G. F. Midgley, and K. J. Simpson. 2022. CO 2 ‐fertilisation enhances resilience to browsing in the recruitment phase of an encroaching savanna tree. Functional Ecology.

CO2‐fertilisation is implicated in the widespread and significant woody encroachment of savannas due to CO2‐stimulated increases in belowground reserves that enhance sapling regrowth after fire. However, the effect of CO2 concentration ([CO2]) on tree responses to the other major disturbance in savannas, herbivory, is poorly understood. Herbivory‐responses cannot be predicted from fire‐responses, as herbivore effects occur earlier during establishment and are moderated by plant palatability and defence rather than belowground carbon accumulation.

Lal, M. M., K. T. Brown, P. Chand, and T. D. Pickering. 2022. An assessment of the aquaculture potential of indigenous freshwater food fish of Fiji, Papua New Guinea, Vanuatu, Solomon Islands, Samoa and Tonga as alternatives to farming of tilapia. Reviews in Aquaculture.

An important driver behind introductions for aquaculture of alien fish species into Pacific Island Countries and Territories (PICTs) is a lack of knowledge about domestication suitability and specific culture requirements of indigenous taxa. Introductions may be appropriate in some circumstances, but in other circumstances, the associated risks may outweigh the benefits, so greater understanding of indigenous species' aquaculture potential is important. This review summarises literature for indigenous freshwater food fish species from Papua New Guinea, Fiji, Vanuatu, the Solomon Islands, Samoa and Tonga, and evaluates their aquaculture potential for food security and/or small‐scale livelihoods. A species selection criteria incorporating economic, social, biological and environmental spheres was used to score 62 candidate species. Tilapia (Oreochromis mossambicus and O. niloticus) now established in PICTs were evaluated for comparison. Results show that 13 species belonging to the families Mugilidae (Mullets), Terapontidae (Grunters), Kuhliidae (Flagtails) and Scatophagidae (Scats) have the highest culture potential according to selection criteria. These feed at a relatively low trophic level (are herbivores/detritivores), have comparatively fast growth rates and overall possess characteristics most amenable for small‐scale, inland aquaculture. The four top‐ranked candidates are all mountain mullets Cestraeus spp., followed by Nile tilapia (Oreochromis niloticus). Lower ranked candidates include three other mullets (Planiliza melinoptera, P. subviridis and Mugil cephalus) and rock flagtail Kuhlia rupestris. Importantly, many species remain data deficient in aspects of their reproductive biology or culture performance. Species profiles and ranked priority species by country are provided with logistical, technological and environmental assessments of country capacities to culture each species.

Aguirre‐Liguori, J. A., A. Morales‐Cruz, and B. S. Gaut. 2022. Evaluating the persistence and utility of five wild Vitis species in the context of climate change. Molecular Ecology.

Crop wild relatives (CWRs) have the capacity to contribute novel traits to agriculture. Given climate change, these contributions may be especially vital for the persistence of perennial crops, because perennials are often clonally propagated and consequently do not evolve rapidly. By studying the landscape genomics of samples from five Vitis CWRs (V. arizonica, V. mustangensis, V. riparia, V. berlandieri and V. girdiana) in the context of projected climate change, we addressed two goals. The first was to assess the relative potential of different CWR accessions to persist in the face of climate change. By integrating species distribution models with adaptive genetic variation, additional genetic features such as genomic load and a phenotype (resistance to Pierce’s Disease), we predicted that accessions from one species (V. mustangensis) are particularly well‐suited to persist in future climates. The second goal was to identify which CWR accessions may contribute to bioclimatic adaptation for grapevine (V. vinifera) cultivation. To do so, we evaluated whether CWR accessions have the allelic capacity to persist if moved to locations where grapevines (V. vinifera) are cultivated in the United States. We identified six candidates from V. mustangensis and hypothesized that they may prove useful for contributing alleles that can mitigate climate impacts on viticulture. By identifying candidate germplasm, this work takes a conceptual step toward assessing the genomic and bioclimatic characteristics of CWRs.

Lu, L.-L., B.-H. Jiao, F. Qin, G. Xie, K.-Q. Lu, J.-F. Li, B. Sun, et al. 2022. Artemisia pollen dataset for exploring the potential ecological indicators in deep time. Earth System Science Data 14: 3961–3995.

Abstract. Artemisia, along with Chenopodiaceae, is the dominant component growing in the desert and dry grassland of the Northern Hemisphere. Artemisia pollen with its high productivity, wide distribution, and easy identification is usually regarded as an eco-indicator for assessing aridity and distinguishing grassland from desert vegetation in terms of the pollen relative abundance ratio of Chenopodiaceae/Artemisia (C/A). Nevertheless, divergent opinions on the degree of aridity evaluated by Artemisia pollen have been circulating in the palynological community for a long time. To solve the confusion, we first selected 36 species from nine clades and three outgroups of Artemisia based on the phylogenetic framework, which attempts to cover the maximum range of pollen morphological variation. Then, sampling, experiments, photography, and measurements were taken using standard methods. Here, we present pollen datasets containing 4018 original pollen photographs, 9360 pollen morphological trait measurements, information on 30 858 source plant occurrences, and corresponding environmental factors. Hierarchical cluster analysis on pollen morphological traits was carried out to subdivide Artemisia pollen into three types. When plotting the three pollen types of Artemisia onto the global terrestrial biomes, different pollen types of Artemisia were found to have different habitat ranges. These findings change the traditional concept of Artemisia being restricted to arid and semi-arid environments. The data framework that we designed is open and expandable for new pollen data of Artemisia worldwide. In the future, linking pollen morphology with habitat via these pollen datasets will create additional knowledge that will increase the resolution of the ecological environment in the geological past. The Artemisia pollen datasets are freely available at Zenodo (; Lu et al., 2022).

Clark, R. P., K.-W. Jiang, and E. Gagnon. 2022. Reinstatement of Ticanto (Leguminosae-Caesalpinioideae) – the final piece in the Caesalpinia group puzzle. PhytoKeys 205: 59–98.

A recent molecular phylogenetic analysis of the Caesalpinia group demonstrated that it comprises 26 genera, but the recognition of a putative 27th genus, Ticanto, remained in doubt. This study presents a phylogenetic analysis of ITS and five plastid loci revealing a robustly supported monophyletic group representing the Ticanto clade, sister to the morphologically distinct genus Pterolobium. Based upon this evidence, along with a morphological evaluation, the genus Ticanto is here reinstated. Descriptions are provided for all nine species of Ticanto, together with a key to the species, maps, and colour photographs. Nine new combinations are made: Ticantocaesia (Hand.-Mazz.) R. Clark & Gagnon, T.crista (L.) R. Clark & Gagnon, T.elliptifolia (S. J. Li, Z. Y. Chen & D. X. Zhang) R. Clark & Gagnon, T.magnifoliolata (Metcalf) R. Clark & Gagnon, T.rhombifolia R. Clark & Gagnon, T.sinensis (Hemsl.) R. Clark & Gagnon, T.szechuenensis (Craib) R. Clark & Gagnon, T.vernalis (Champion ex Benth.) R. Clark & Gagnon and T.yunnanensis (S. J. Li, D. X. Zhang & Z.Y. Chen) R. Clark & Gagnon. The final major question in the delimitation of segregate genera from within Caesalpiniasensu lato and the Caesalpinia group is thus resolved.

Cunze, S., and S. Klimpel. 2022. From the Balkan towards Western Europe: Range expansion of the golden jackal ( Canis aureus )—A climatic niche modeling approach. Ecology and Evolution 12.

In recent decades, a rapid range expansion of the golden jackal (Canis aureus) towards Northern and Western Europe has been observed. The golden jackal is a medium‐sized canid, with a broad and flexible diet. Almost 200 different parasite species have been reported worldwide from C. aureus, including many parasites that are shared with dogs and cats and parasite species of public health concern. As parasites may follow the range shifts of their host, the range expansion of the golden jackal could be accompanied by changes in the parasite fauna in the new ecosystems. In the new distribution area, the golden jackal could affect ecosystem equilibrium, e.g., through changed competition situations or predation pressure. In a niche modeling approach, we project the future climatic habitat suitability of the golden jackal in Europe in the context of whether climatic changes promote range expansion. We use an ensemble forecast based on six presence‐absence algorithms to estimate the climatic suitability of C. aureus for different time periods up to the year 2100 considering different IPCC scenarios on future development. As predictor variables, we used six bioclimatic variables provided by worldclim. Our results clearly indicate that areas with climatic conditions analogous to those of the current core distribution area of the golden jackal in Europe will strongly expand towards the north and the west in future decades. Thus, the observed range expansion may be favored by climate change. The occurrence of stable populations can be expected in Central Europe. With regard to biodiversity and public health concerns, the population and range dynamics of the golden jackal should be surveyed. Correlative niche models provide a useful and frequently applied tool for this purpose. The results can help to make monitoring more efficient by identifying areas with suitable habitat and thus a higher probability of occurrence.

Jablonski, D., R. Masroor, and S. Hofmann. 2022. On the edge of the Shivaliks: An insight into the origin and taxonomic position of Pakistani toads from the Duttaphrynus melanostictus complex (Amphibia, Bufonidae). Zoosystematics and Evolution 98: 275–284.

AbstractThe common Asian toad Duttaphrynusmelanostictus (Schneider, 1799) complex has a wide distribution ranging from western foothills of the Himalaya to the easternmost range of the Wallacea, with the evidence of human-mediated introductions to some other areas. In the entire distribution range, the complex is formed by several evolutionary clades, distributed mostly in South-East Asia with unresolved taxonomy. In the northwestern edge of its distribution (Pakistan), the name D.melanostictushazarensis (Khan, 2001) has been assigned to local populations but its biological basis remained, so far, understudied and unvalidated. Therefore, we re-evaluated the available genetic data (mitochondrial and nuclear) to show the relationships between Pakistani populations (including the type locality of D.m.hazarensis) and others from across the range. Our results showed that Pakistani populations are associated with one, deeply diverged, well-supported and widely distributed clade (so-called Duttaphrynus sp. 1 according to 16S, or clade B based on tRNAGly-ND3), that has already been detected in previous studies. This clade is further distributed in India, Nepal, Bangladesh, Malaysia, Singapore, and Indonesia and is characterized by a low level of genetic variability. This further suggests that both natural, as well as potential human-mediated dispersal, might have played an important role in setting up the current phylogeographic and distribution pattern of this clade. The clade is deeply divergent from other clades of the complex and represents a taxonomically unresolved entity. We here argue that the clade Duttaphrynus sp. 1/B represents a distinct species for which the name Duttaphrynusbengalensis (Daudin, 1802) comb. nov. is applicable, while the description of D.m.hazarensis does not satisfy the rules of the International Code of Zoological Nomenclature.

Pérez, G., M. Vilà, and B. Gallardo. 2022. Potential impact of four invasive alien plants on the provision of ecosystem services in Europe under present and future climatic scenarios. Ecosystem Services 56: 101459.

Invasive alien species (IAS) are one of the main threats to biodiversity conservation, with significant socio-economic and ecological impacts as they disrupt ecosystem services and compromise human well-being. Global change may exacerbate the impacts of IAS, since rising temperatures and human activities favour their introduction and range expansion. Therefore, anticipating the impacts of biological invasions is crucial to support decision-making for their management. In this work, the potential impacts of four invasive alien plant species: Ailanthus altissima, Baccharis halimifolia, Impatiens glandulifera and Pueraria montana, on the provision of three ecosystem services in Europe were evaluated under current and future climate change scenarios. Using a risk analysis protocol, we determined that the most affected services are food provisioning, soil erosion regulation and the maintenance of biological diversity. To evaluate future impacts, species distribution models were calibrated using bioclimatic, environmental and human impact variables. We found that most of continental Europe is suitable for the establishment of A. altissima, B. halimifolia and I. glandulifera, while the potential distribution of P. montana is more limited. Models anticipate a shift in the distribution range for the species towards the north and east of Europe under future scenarios. Bivariate analysis allowed the identification of trends for future impacts in ecosystem services by simultaneously visualising the potential distribution of invasive species and the provision of ecosystem services. Our models project an increase in critical and high impact areas on the analysed ecosystem services, with Western Europe and the British Isles as the most affected regions. In comparison, lower impacts are projected for the Mediterranean region, likely as a consequence of the northwards expansion of invaders. Measures need to be taken to mitigate the expansion and impact of invasive species as our work shows that it can jeopardise the provision of three key services in Europe.