Science Enabled by Specimen Data
Chukwuma, E. C., and L. T. Mankga. 2025. A MaxEnt model for estimating suitable habitats for some important Pelargonium species in South Africa. Journal for Nature Conservation 84: 126845. https://doi.org/10.1016/j.jnc.2025.126845
Accessing the rich biodiversity in tropical ecosystems has been of great interest to scientists across the globe. While several species have been underutilized despite their wide distribution, many others are faced with continuous population decline across their native range. Here, we amassed occurrence data and environmental variables to estimate the spatial distribution and habitat suitability of six important Pelargonium species whose conservation status in South Africa has been of concern. These were combined and used to project the future habitats under 2 Global Climate Models (GCMs) and 2 Scenarios (RCP 4.5 & 8.5). We overlayed our area maps and conducted a gap analysis to identify priority areas for the conservation of our focal species. Results showed a distribution pattern driven by temperature and precipitation, and unstable suitable areas by the years 2050 and 2070. Five temperature and precipitation variables (Bio2, Bio4, Bio12, Bio14, and Bio18) were identified as primary contributors to the habitat suitability of the selected Pelargonium species. Our model evaluation demonstrated a strong performance, with an AUC score >0.8, providing robust support for its replicability in monitoring the spatial distribution of other related taxa. We identified key areas for conservation activities in a bid to expand the current known habitats of the species in focus. While we leveraged SDM approach for explaining the area of occupancy and the spatial extent of Pelargonium species across in South Africa, we posit that attention should be drawn to the preservation of the remaining populations of the species and their associated habitats, towards mitigating their extinction.
Kolanowska, M., and D. Scaccabarozzi. 2024. Does Climate Change Pose a Threat to the Guild Mimicry System of Australian Orchids? Ecology and Evolution 14. https://doi.org/10.1002/ece3.70633
Global warming is one of the biggest threats to global biodiversity causing not only changes in the patterns of precipitation and temperature but also disturbing ecological interactions. The aim of our study was to forecast the effect of climate change on the distribution of food‐deceptive orchid species whose pollination strategy relies on a strict association with pollinators and co‐occurring rewarding Faboideae plants. We used the ecological niche modeling approach to evaluate future overlap of the suitable niches of studied orchid species with the predicted distribution of their ecological partners. Models were made based on two different global circulation models (FIO, CNRM). CNRM projections predict expansion of orchids' geographical range. In contrast, FIO prediction is less optimistic, forecasting species range contraction. The studied Faboideae species showed different responses to predicted global warming with no consistent patterns in how their suitable niches might change. Most climate change projections and scenarios of the future modifications of temperature and precipitation patterns do not predict significant loss of suitable niches of Trichocolletes bees (Colletidae) pollinating Diuris species. However, global warming has the potential to disrupt interactions between the studied orchids and their co‐occurring pea plants by altering the overlap of their geographical ranges which can further disturb pollination success. CNRM projections predict an overall loss of Faboideae within the potential geographical range of Diuris brumalis. Conversely, FIO projections suggest a less extensive predicted divergence. Our simulations offer suggestions for conservation strategies of orchids and potentially for other species that have a similar pollination strategy. The areas indicated here as suitable in the future for the occurrence of all ecological partners can be important climate refugia to consider in local conservation plans. The approach used in our study can serve as a model for understanding the potential effects of climate change on the strength of the pollination system via food deception.
Wenk, E., T. Mesaglio, D. Keith, and W. Cornwell. 2024. Curating protected area-level species lists in an era of diverse and dynamic data sources. Ecological Informatics 84: 102921. https://doi.org/10.1016/j.ecoinf.2024.102921
Dynamic yet accurate species lists for protected areas are essential for conservation and biodiversity research. Even when such lists exist, changing taxonomy, ongoing species migrations and invasions, and new discoveries of historically overlooked species mean static lists can become rapidly outdated. Biodiversity databases such as the Global Biodiversity Information Facility, and citizen science platforms such as iNaturalist, offer rapidly accessible, georeferenced data, but their accuracy is rarely tested. Here we compare species lists generated for two of the world's oldest, more famous protected areas – Yosemite National Park in California, United States and Royal National Park in New South Wales, Australia – using both automated data extraction techniques and extensive manual curation steps. We show that automated list creation without manual curation offers inflated measures of species diversity. Lists generated from herbarium vouchers required more curation than lists generated from iNaturalist, with both incorrect coordinates attached to vouchers and long-outdated names inflating voucher-based species lists. In comparison, iNaturalist data had relatively few errors, in part due to continual curation by a large community, including many botanical experts, and the frequent and automatic implementation of taxonomic updates. As such, iNaturalist will become an increasingly accurate supplementary source for automated biodiversity lists over time, but currently offers poor coverage of graminoid species and introduced species relative to showier, native taxa, and relies on continued expert contributions to identifications. At this point, researchers must manually curate lists extracted from herbarium vouchers or static park lists, and integrate these data with records from iNaturalist, to produce the most robust and taxonomically up-to-date species lists for protected areas.
Saunders, T. C., I. Larridon, W. J. Baker, R. L. Barrett, F. Forest, E. Françoso, O. Maurin, et al. 2024. Tangled webs and spider‐flowers: Phylogenomics, biogeography, and seed morphology inform the evolutionary history of Cleomaceae. American Journal of Botany 111. https://doi.org/10.1002/ajb2.16399
Premise Cleomaceae is an important model clade for studies of evolutionary processes including genome evolution, floral form diversification, and photosynthetic pathway evolution. Diversification and divergence patterns in Cleomaceae remain tangled as research has been restricted by its worldwide distribution, limited genetic sampling and species coverage, and a lack of definitive fossil calibration points.MethodsWe used target sequence capture and the Angiosperms353 probe set to perform a phylogenetic study of Cleomaceae. We estimated divergence times and biogeographic analyses to explore the origin and diversification of the family. Seed morphology across extant taxa was documented with multifocal image‐stacking techniques and morphological characters were extracted, analyzed, and compared to fossil records.ResultsWe recovered a well‐supported and resolved phylogenetic tree of Cleomaceae generic relationships that includes 236 (~86%) species. We identified 11 principal clades and confidently placed Cleomella as sister to the rest of the family. Our analyses suggested that Cleomaceae and Brassicaceae diverged ~56 mya, and Cleomaceae began to diversify ~53 mya in the Palearctic and Africa. Multiple transatlantic disjunct distributions were identified. Seeds were imaged from 218 (~80%) species in the family and compared to all known fossil species.ConclusionsOur results represent the most comprehensive phylogenetic study of Cleomaceae to date. We identified transatlantic disjunctions and proposed explanations for these patterns, most likely either long‐distance dispersals or contractions in latitudinal distributions caused by climate change over geological timescales. We found that seed morphology varied considerably but mostly mirrored generic relationships.
Hodgson, R. J., C. Liddicoat, C. Cando-Dumancela, N. W. Fickling, S. D. Peddle, S. Ramesh, and M. F. Breed. 2024. Increasing aridity strengthens the core bacterial rhizosphere associations in the pan-palaeotropical C4 grass, Themeda triandra. Applied Soil Ecology 201: 105514. https://doi.org/10.1016/j.apsoil.2024.105514
Understanding belowground plant-microbial interactions is fundamental to predicting how plant species respond to climate change, particularly in global drylands. However, these interactions are poorly understood, especially for keystone grass species like the pan-palaeotropical Themeda triandra. Here, we used 16S rRNA amplicon sequencing to characterise microbiota in rhizospheres and bulk soils associated with T. triandra. We applied this method to eight native sites across a 3-fold aridity gradient (aridity index range = 0.318 to 0.903 = 87 % global aridity distribution) in southern Australia. By examining the relative contributions of climatic, edaphic, ecological, and host specific phenotypic traits, we identified the ecological drivers of core T. triandra-associated microbiota. We show that aridity had the strongest effect on shaping these core microbiotas, and report that a greater proportion of bacterial taxa that were from the core rhizosphere microbiomes were also differentially abundant in more arid T. triandra regions. These results suggest that T. triandra naturally growing in soils under more arid conditions have greater reliance on rhizosphere core taxa than plants growing under wetter conditions. Our study underscores the likely importance of targeted recruitment of bacteria into the rhizosphere by grassland keystone species, such as T. triandra, when growing in arid conditions. This bacterial soil recruitment is expected to become even more important under climate change.
Bürger, M., and J. Chory. 2024. A potential role of heat‐moisture couplings in the range expansion of Striga asiatica. Ecology and Evolution 14. https://doi.org/10.1002/ece3.11332
Parasitic weeds in the genera Orobanche, Phelipanche (broomrapes) and Striga (witchweeds) have a devastating impact on food security across much of Africa, Asia and the Mediterranean Basin. Yet, how climatic factors might affect the range expansion of these weeds in the context of global environmental change remains unexplored. We examined satellite‐based environmental variables such as surface temperature, root zone soil moisture, and elevation, in relation to parasitic weed distribution and environmental conditions over time, in combination with observational data from the Global Biodiversity Information Facility (GBIF). Our analysis reveals contrasting environmental and altitude preferences in the genera Striga and Orobanche. Asiatic witchweed (Striga asiatica), which infests corn, rice, sorghum, and sugar cane crops, appears to be expanding its range in high elevation habitats. It also shows a significant association with heat‐moisture coupling events, the frequency of which is rising in such environments. These results point to geographical shifts in distribution and abundance in parasitic weeds due to climate change.
Serra‐Diaz, J. M., J. Borderieux, B. Maitner, C. C. F. Boonman, D. Park, W. Guo, A. Callebaut, et al. 2024. occTest: An integrated approach for quality control of species occurrence data. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13847
Aim Species occurrence data are valuable information that enables one to estimate geographical distributions, characterize niches and their evolution, and guide spatial conservation planning. Rapid increases in species occurrence data stem from increasing digitization and aggregation efforts, and citizen science initiatives. However, persistent quality issues in occurrence data can impact the accuracy of scientific findings, underscoring the importance of filtering erroneous occurrence records in biodiversity analyses.InnovationWe introduce an R package, occTest, that synthesizes a growing open‐source ecosystem of biodiversity cleaning workflows to prepare occurrence data for different modelling applications. It offers a structured set of algorithms to identify potential problems with species occurrence records by employing a hierarchical organization of multiple tests. The workflow has a hierarchical structure organized in testPhases (i.e. cleaning vs. testing) that encompass different testBlocks grouping different testTypes (e.g. environmental outlier detection), which may use different testMethods (e.g. Rosner test, jacknife,etc.). Four different testBlocks characterize potential problems in geographic, environmental, human influence and temporal dimensions. Filtering and plotting functions are incorporated to facilitate the interpretation of tests. We provide examples with different data sources, with default and user‐defined parameters. Compared to other available tools and workflows, occTest offers a comprehensive suite of integrated tests, and allows multiple methods associated with each test to explore consensus among data cleaning methods. It uniquely incorporates both coordinate accuracy analysis and environmental analysis of occurrence records. Furthermore, it provides a hierarchical structure to incorporate future tests yet to be developed.Main conclusionsoccTest will help users understand the quality and quantity of data available before the start of data analysis, while also enabling users to filter data using either predefined rules or custom‐built rules. As a result, occTest can better assess each record's appropriateness for its intended application.
Anest, A., Y. Bouchenak-Khelladi, T. Charles-Dominique, F. Forest, Y. Caraglio, G. P. Hempson, O. Maurin, and K. W. Tomlinson. 2024. Blocking then stinging as a case of two-step evolution of defensive cage architectures in herbivore-driven ecosystems. Nature Plants. https://doi.org/10.1038/s41477-024-01649-4
Dense branching and spines are common features of plant species in ecosystems with high mammalian herbivory pressure. While dense branching and spines can inhibit herbivory independently, when combined, they form a powerful defensive cage architecture. However, how cage architecture evolved under mammalian pressure has remained unexplored. Here we show how dense branching and spines emerged during the age of mammalian radiation in the Combretaceae family and diversified in herbivore-driven ecosystems in the tropics. Phylogenetic comparative methods revealed that modern plant architectural strategies defending against large mammals evolved via a stepwise process. First, dense branching emerged under intermediate herbivory pressure, followed by the acquisition of spines that supported higher speciation rates under high herbivory pressure. Our study highlights the adaptive value of dense branching as part of a herbivore defence strategy and identifies large mammal herbivory as a major selective force shaping the whole plant architecture of woody plants. This study explores the evolution of two traits, branching density and spine presence, in the globally distributed plant family Combretaceae. These traits were found to have appeared in a two-step process in response to mammalian herbivory pressure, revealing the importance of large mammals in the evolution of plant architecture diversity.
Minghetti, E., P. M. Dellapé, M. Maestro, and S. I. Montemayor. 2024. Evaluating the climatic suitability of Engytatus passionarius Minghetti et al. (Heteroptera, Miridae) as a biological control agent of the invasive stinking passion flower Passiflora foetida L. in Australia through ecological niche models. Biological Control 191: 105461. https://doi.org/10.1016/j.biocontrol.2024.105461
Passiflora foetida is a climbing vine, native to the Neotropical Region that is causing major economic and ecological damage in Australia, where it is rapidly spreading. Traditional control options, such as cutting, manual uprooting, and herbicide applications are only effective for local management. Currently, the plant bug Engytatus passionarius is the most promising biological control agent. Specificity tests performed in its native range in Argentina suggest it is highly specific to the plant, and it has not been observed in the field associated with other plants. As climate determines the establishment of insects, knowing if the environmental conditions suit their requirements is key to introducing a species in a region. Also, an overlap between the climatic niches of species is an indicator of similar requirements. To explore the possibilities of a successful establishment of E. passionarius in Australia, ecological niche models (ENM) were built for the plant bug and for the vine and their overlap was measured. The ENM projected to Australia recognized suitable environmental conditions for the establishment of E. passionarius in several regions where P. foetida is present, both for current and future scenarios. Moreover, the niche of the plant bug is almost completely overlapped with that of the vine. All the aforementioned evidence seems to indicate that E. passionarius has a good chance to become an effective biological control agent of P. foetida.
ter Huurne, M. B., L. J. Potgieter, C. Botella, and D. M. Richardson. 2023. Melaleuca (Myrtaceae): Biogeography of an important genus of trees and shrubs in a changing world. South African Journal of Botany 162: 230–244. https://doi.org/10.1016/j.sajb.2023.08.052
The number of naturalised and invasive woody plant species has increased rapidly in recent decades. Despite the increasing interest in tree and shrub invasions, little is known about the invasion ecology of most species. This paper explores the global movement of species in the genus Melaleuca (Myrtaceae; here including the genus Callistemon). We assess the global introduction history, distribution and biogeographic status of the genus. Various global species occurrence databases, citizen science (iNaturalist), and the literature were used.Seventy-two species [out of 386 Melaleuca species; 19%] have been introduced to at least 125 regions outside their native range. The main regions of global Melaleuca introductions are Southeast Asia, the southern parts of North America, south-eastern South America, southern Africa and Europe. The earliest record of a Melaleuca species outside of the native range of the genus is 1789. First records of Melaleuca species outside their native range were most commonly recorded in the 1960s, with records from all over the world. The main reasons for Melaleuca introductions were for use in the tea tree (pharmaceutical value) and ornamental horticulture industries. Melaleuca introductions, naturalizations and invasions are recent compared to many other woody plant taxa. Experiences in Florida and South Africa highlight the potential of Melaleuca species to spread rapidly and have significant ecological impacts. It is likely that the accumulating invasion debt will result in further naturalization and invasion of Melaleuca species in the future.