Science Enabled by Specimen Data

Briscoe Runquist, R. D., Lake, T. A., & Moeller, D. A. (2021). Improving predictions of range expansion for invasive species using joint species distribution models and surrogate co‐occurring species. Journal of Biogeography. doi:10.1111/jbi.14105 https://doi.org/10.1111/jbi.14105

Aims: Species distribution models (SDMs) are often used to forecast potential distributions of important invasive or rare species. However, situations where models could be the most valuable ecologically or economically, such as for predicting invasion risk, often pose the greatest challenges to SDM…

Saldaña‐López, A., Vilà, M., Lloret, F., Manuel Herrera, J., & González‐Moreno, P. (2021). Assembly of species’ climatic niches of coastal communities does not shift after invasion. Journal of Vegetation Science, 32(2). doi:10.1111/jvs.12989 https://doi.org/10.1111/jvs.12989

Question: Do invasions by invasive plant species with contrasting trait profiles (Arctotheca calendula, Carpobrotus spp., Conyza bonariensis, and Opuntia dillenii) change the climatic niche of coastal plant communities? Location: Atlantic coastal habitats in Huelva (Spain). Methods: We identifi…

Deanna, R., Wilf, P., & Gandolfo, M. A. (2020). New physaloid fruit‐fossil species from early Eocene South America. American Journal of Botany, 107(12), 1749–1762. doi:10.1002/ajb2.1565 https://doi.org/10.1002/ajb2.1565

Premise: Solanaceae is a scientifically and economically important angiosperm family with a minimal fossil record and an intriguing early evolutionary history. Here, we report a newly discovered fossil lantern fruit with a suite of features characteristic of Physalideae within Solanaceae. The fossil…

Quiroga, R. E., Premoli, A. C., & Fernández, R. J. (2020). Niche dynamics in amphitropical desert disjunct plants: Seeking for ecological and species‐specific influences. Global Ecology and Biogeography. doi:10.1111/geb.13215 https://doi.org/10.1111/geb.13215

Aim: Numerous studies have assessed whether species niches are conserved in geographically separated regions. However, most of them were performed on invasive species, with the limitation that such species have likely not yet reached their potential distribution in the invaded region. Here we test t…

Brightly, W. H., Hartley, S. E., Osborne, C. P., Simpson, K. J., & Strömberg, C. A. E. (2020). High silicon concentrations in grasses are linked to environmental conditions and not associated with C 4 photosynthesis. Global Change Biology. doi:10.1111/gcb.15343 https://doi.org/10.1111/gcb.15343

The uptake and deposition of silicon (Si) as silica phytoliths is common among land plants and is associated with a variety of functions. Among these, herbivore defense has received significant attention, particularly with regards to grasses and grasslands. Grasses are well known for their high sili…

De Jesús Hernández-Hernández, M., Cruz, J. A., & Castañeda-Posadas, C. (2020). Paleoclimatic and vegetation reconstruction of the miocene southern Mexico using fossil flowers. Journal of South American Earth Sciences, 104, 102827. doi:10.1016/j.jsames.2020.102827 https://doi.org/10.1016/j.jsames.2020.102827

Concern about the course of the current environmental problems has raised interest in investigating the different scenarios that have taken place in our planet throughout time. To that end, different methodologies have been employed in order to determine the different variables that compose the envi…

Adhikari, S., Burke, I. C., & Eigenbrode, S. D. (2020). Mayweed chamomile ( Anthemis cotula L.) biology and management—A review of an emerging global invader. Weed Research. doi:10.1111/wre.12426 https://doi.org/10.1111/wre.12426

The globally invasive weed, mayweed chamomile (Anthemis cotula L.) is an annual, bushy, ill‐scented herb, originating in Eurasia. It is aggressively weedy in croplands, field‐side ditches, wet areas and along roadsides, especially in slightly acidic, nitrogen‐rich, clay‐loam soils. In addition to in…

Lindberg, C. L., Hanslin, H. M., Schubert, M., Marcussen, T., Trevaskis, B., Preston, J. C., & Fjellheim, S. (2020). Increased above ground resource allocation is a likely precursor for independent evolutionary origins of annuality in the Pooideae grass subfamily. New Phytologist. doi:10.1111/nph.16666 https://doi.org/10.1111/nph.16666

Semelparous annual plants flower a single time during their one‐year life cycle, investing much of their energy into rapid reproduction. In contrast, iteroparous perennial plants flower multiple times over several years, and partition their resources between reproduction and persistence. To which ex…

Van Treuren, R., Hoekstra, R., Wehrens, R., & van Hintum, T. (2020). Effects of climate change on the distribution of crop wild relatives in the Netherlands in relation to conservation status and ecotope variation. Global Ecology and Conservation, 23, e01054. doi:10.1016/j.gecco.2020.e01054 https://doi.org/10.1016/j.gecco.2020.e01054

Crop wild relatives (CWR) are wild plant taxa that are genetically related to a cultivated species and are considered rich sources of useful traits for crop improvement. CWR are generally underrepresented in genebanks, while their survival in nature is not guaranteed. Inventories and risk analyses a…

Goodwin, Z. A., Muñoz-Rodríguez, P., Harris, D. J., Wells, T., Wood, J. R. I., Filer, D., & Scotland, R. W. (2020). How long does it take to discover a species? Systematics and Biodiversity, 1–10. doi:10.1080/14772000.2020.1751339 https://doi.org/10.1080/14772000.2020.1751339

The description of a new species is a key step in cataloguing the World’s flora. However, this is only a preliminary stage in a long process of understanding what that species represents. We investigated how long the species discovery process takes by focusing on three key stages: 1, the collection …