Science Enabled by Specimen Data

Rodríguez-Merino, A. 2023. Identifying and Managing Areas under Threat in the Iberian Peninsula: An Invasion Risk Atlas for Non-Native Aquatic Plant Species as a Potential Tool. Plants 12: 3069. https://doi.org/10.3390/plants12173069

Predicting the likelihood that non-native species will be introduced into new areas remains one of conservation’s greatest challenges and, consequently, it is necessary to adopt adequate management measures to mitigate the effects of future biological invasions. At present, not much information is available on the areas in which non-native aquatic plant species could establish themselves in the Iberian Peninsula. Species distribution models were used to predict the potential invasion risk of (1) non-native aquatic plant species already established in the peninsula (32 species) and (2) those with the potential to invade the peninsula (40 species). The results revealed that the Iberian Peninsula contains a number of areas capable of hosting non-native aquatic plant species. Areas under anthropogenic pressure are at the greatest risk of invasion, and the variable most related to invasion risk is temperature. The results of this work were used to create the Invasion Risk Atlas for Alien Aquatic Plants in the Iberian Peninsula, a novel online resource that provides information about the potential distribution of non-native aquatic plant species. The atlas and this article are intended to serve as reference tools for the development of public policies, management regimes, and control strategies aimed at the prevention, mitigation, and eradication of non-native aquatic plant species.

Clemente, K. J. E., and M. S. Thomsen. 2023. High temperature frequently increases facilitation between aquatic foundation species: a global meta‐analysis of interaction experiments between angiosperms, seaweeds, and bivalves. Journal of Ecology. https://doi.org/10.1111/1365-2745.14101

Many studies have quantified ecological impacts of individual foundation species (FS). However, emerging data suggest that FS often co‐occur, potentially inhibiting or facilitating one another, thereby causing indirect, cascading effects on surrounding communities. Furthermore, global warming is accelerating, but little is known about how interactions between co‐occurring FS vary with temperature.Shallow aquatic sedimentary systems are often dominated by three types of FS: slower‐growing clonal angiosperms, faster‐growing solitary seaweeds, and shell‐forming filter‐ and deposit‐feeding bivalves. Here, we tested the impacts of one FS on another by analyzing manipulative interaction experiments from 148 papers with a global meta‐analysis.We calculated 1,942 (non‐independent) Hedges’ g effect sizes, from 11,652 extracted values over performance responses, such as abundances, growths or survival of FS, and their associated standard deviations and replication levels. Standard aggregation procedures generated 511 independent Hedges’ g that was classified into six types of reciprocal impacts between FS.We found that (i) seaweeds had consistent negative impacts on angiosperms across performance responses, organismal sizes, experimental approaches, and ecosystem types; (ii) angiosperms and bivalves generally had positive impacts on each other (e.g., positive effects of angiosperms on bivalves were consistent across organismal sizes and experimental approaches, but angiosperm effect on bivalve growth and bivalve effect on angiosperm abundance were not significant); (iii) bivalves positively affected seaweeds (particularly on growth responses); (iv) there were generally no net effects of seaweeds on bivalves (except for positive effect on growth) or angiosperms on seaweeds (except for positive effect on ‘other processes’); and (v) bivalve interactions with other FS were typically more positive at higher temperatures, but angiosperm‐seaweed interactions were not moderated by temperature.Synthesis: Despite variations in experimental and spatiotemporal conditions, the stronger positive interactions at higher temperatures suggest that facilitation, particularly involving bivalves, may become more important in a future warmer world. Importantly, addressing research gaps, such as the scarcity of FS interaction experiments from tropical and freshwater systems and for less studied species, as well as testing for density‐dependent effects, could better inform aquatic ecosystem conservation and restoration efforts and broaden our knowledge of FS interactions in the Anthropocene.

Medina, L., P. Nascimento, and M. Menezes de Sequeira. 2021. Rediscovering of Chara braunii (Characeae, Charophyta) in Madeira (Macaronesian region, Portugal). Botanica Complutensis 45: e79754. https://doi.org/10.5209/bocm.79754

Chara braunii C.C. Gmelin (Characeae, Charophyta) was found in Madeira Island (Portugal) in a water channel in an agricultural area. This constitutes the first record of that species since 1944 in the Macaronesian region (Azores, Madeira and Canary archipelagos).

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Deanna, R., P. Wilf, and M. A. Gandolfo. 2020. New physaloid fruit‐fossil species from early Eocene South America. American Journal of Botany 107: 1749–1762. https://doi.org/10.1002/ajb2.1565

Premise: Solanaceae is a scientifically and economically important angiosperm family with a minimal fossil record and an intriguing early evolutionary history. Here, we report a newly discovered fossil lantern fruit with a suite of features characteristic of Physalideae within Solanaceae. The fossil…

Bazzicalupo, A. L., J. Whitton, and M. L. Berbee. 2019. Over the hills, but how far away? Estimates of mushroom geographic range extents. Journal of Biogeography. https://doi.org/10.1111/jbi.13617

Aim: Geographic distributions of mushroom species remain poorly understood despite their importance for advancing our understanding of the habitat requirements, species interactions and ecosystem functions of this key group of organisms. Here, we estimate geographic range extents (maximum within‐spe…

Ronquillo, C., F. Alves-Martins, V. Mazimpaka, T. Sobral-Souza, B. Vilela-Silva, N. G. Medina, and J. Hortal. 2020. Assessing spatial and temporal biases and gaps in the publicly available distributional information of Iberian mosses. Biodiversity Data Journal 8. https://doi.org/10.3897/bdj.8.e53474

One of the most valuable initiatives on massive availability of biodiversity data is the Global Biodiversity Information Facility, which is creating new opportunities to develop and test macroecological knowledge. However, the potential uses of these data are limited by the gaps and biases associate…

Uludag, A., N. Aksoy, A. Yazlık, Z. F. Arslan, E. Yazmış, I. Uremis, T. A. Cossu, et al. 2017. Alien flora of Turkey: checklist, taxonomic composition and ecological attributes. NeoBiota 35: 61–85. https://doi.org/10.3897/neobiota.35.12460

The paper provides an updated checklist of the alien flora of Turkey with information on its structure. The alien flora of Turkey comprises 340 taxa, among which there are 321 angiosperms, 17 gymnosperms and two ferns. Of the total number of taxa, 228 (68%) are naturalized and 112 (32%) are casual. …