Science Enabled by Specimen Data
Luna-Aranguré, C., and E. Vázquez-Domínguez. 2024. Bears into the Niche-Space: Phylogeography and Phyloclimatic Model of the Family Ursidae. Diversity 16: 223. https://doi.org/10.3390/d16040223
Assessing niche evolution remains an open question and an actively developing area of study. The family Ursidae consists of eight extant species for which, despite being the most studied family of carnivores, little is known about the influence of climate on their evolutionary history and diversification. We evaluated their evolutionary patterns based on a combined phylogeography and niche modeling approach. We used complete mitogenomes, estimated divergence times, generated ecological niche models and applied a phyloclimatic model to determine the species evolutionary and diversification patterns associated with their respective environmental niches. We inferred the family evolutionary path along the environmental conditions of maximum temperature and minimum precipitation, from around 20 million years ago to the present. Our findings show that the phyloclimatic niches of the bear species occupy most of the environmental space available on the planet, except for the most extreme warm conditions, in accordance with the wide geographic distribution of Ursidae. Moreover, some species exhibit broader environmental niches than others, and in some cases, they explore precipitation axes more extensively than temperature axes or vice versa, suggesting that not all species are equally adaptable to these variables. We were able to elucidate potential patterns of niche conservatism and evolution, as well as niche overlapping, suggesting interspecific competitive exclusion between some of the bear species. We present valuable insights into the ecological and evolutionary processes driving the diversification and distribution of the Ursidae. Our approach also provides essential information for guiding effective conservation strategies, particularly in terms of distribution limits in the face of climate change.
Khlyap, L. A., A. A. Warshavsky, N. N. Dergunova, F. A. Osipov, and V. G. Petrosyan. 2023. The Most Dangerous Invasive Near-Water Mammals in Russia: Ensemble Models of Spatial Distribution. Russian Journal of Biological Invasions 14: 457–483. https://doi.org/10.1134/s2075111723030104
Abstract The potential ranges of three near-water (hereafter, semiaquatic) mammals included in the list of the 100 most dangerous invasive species of Russia (Сanadian beaver, muskrat, American mink) are presented. Maps of suitable habitats of species were created by ensemble modeling of spatial distribution of species (eSDM) on the basis of global species occurrence records in the native and invasive range and bioclimatic variables characterizing the current climate. An estimate of the effectiveness of constructing ensemble models in comparison with individual models (iSDM) is given. The results of analysis of consequences of invasions of semiaquatic mammals are presented and the features of control of number and limitation of their distribution in the future on the territory of Russia are considered. The patterns of formation of the invasive part of the range of alien semiaquatic mammals are summarized and suitable regions for their future invasions are predicted.
Cruz, J. A., J. A. Velasco, J. Arroyo-Cabrales, and E. Johnson. 2023. Paleoclimatic Reconstruction Based on the Late Pleistocene San Josecito Cave Stratum 720 Fauna Using Fossil Mammals, Reptiles, and Birds. Diversity 15: 881. https://doi.org/10.3390/d15070881
Advances in technology have equipped paleobiologists with new analytical tools to assess the fossil record. The functional traits of vertebrates have been used to infer paleoenvironmental conditions. In Quaternary deposits, birds are the second-most-studied group after mammals. They are considered a poor paleoambiental proxy because their high vagility and phenotypic plasticity allow them to respond more effectively to climate change. Investigating multiple groups is important, but it is not often attempted. Biogeographical and climatic niche information concerning small mammals, reptiles, and birds have been used to infer the paleoclimatic conditions present during the Late Pleistocene at San Josecito Cave (~28,000 14C years BP), Mexico. Warmer and dryer conditions are inferred with respect to the present. The use of all of the groups of small vertebrates is recommended because they represent an assemblage of species that have gone through a series of environmental filters in the past. Individually, different vertebrate groups provide different paleoclimatic information. Birds are a good proxy for inferring paleoprecipitation but not paleotemperature. Together, reptiles and small mammals are a good proxy for inferring paleoprecipitation and paleotemperature, but reptiles alone are a bad proxy, and mammals alone are a good proxy for inferring paleotemperature and precipitation. The current paleoclimatic results coupled with those of a previous vegetation structure analysis indicate the presence of non-analog paleoenvironmental conditions during the Late Pleistocene in the San Josecito Cave area. This situation would explain the presence of a disharmonious fauna and the extinction of several taxa when these conditions later disappeared and do not reappear again.
Wilson Brown, M. K., and E. B. Josephs. 2023. Evaluating niche changes during invasion with seasonal models in Capsella bursa‐pastoris. American Journal of Botany. https://doi.org/10.1002/ajb2.16140
Premise Researchers often use ecological niche models to predict where species might establish and persist under future or novel climate conditions. However, these predictive methods assume species have stable niches across time and space. Furthermore, ignoring the time of occurrence data can obscure important information about species reproduction and ultimately fitness. Here, we assess compare ecological niche models generated from full-year averages to seasonal models Methods In this study, we generate full-year and monthly ecological niche models for Capsella bursa-pastoris in Europe and North America to see if we can detect changes in the seasonal niche of the species after long-distance dispersal. Key Results We find full-year ecological niche models have low transferability across continents and there are continental differences in the climate conditions that influence the distribution of C. bursa-pastoris. Monthly models have greater predictive accuracy than full-year models in cooler seasons, but no monthly models are able to predict North American summer occurrences very well. Conclusions The relative predictive ability of European monthly models compared to North American monthly models suggests a change in the seasonal timing between the native range to the non-native range. These results highlight the utility of ecological niche models at finer temporal scales in predicting species distributions and unmasking subtle patterns of evolution.
Fell, H. G., O. G. Osborne, M. D. Jones, S. Atkinson, S. Tarr, S. H. Keddie, and A. C. Algar. 2022. Biotic factors limit the invasion of the plague pathogen ( Yersinia pestis ) in novel geographical settings P. Kamath [ed.],. Global Ecology and Biogeography 31: 672–684. https://doi.org/10.1111/geb.13453
Aim: The distribution of Yersinia pestis, the pathogen that causes plague in humans, is reliant upon transmission between host species; however, the degree to which host species distributions dictate the distribution of Y. pestis, compared with limitations imposed by the environmental niche of Y. pe…
Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885
The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…
Cooper, N., A. L. Bond, J. L. Davis, R. Portela Miguez, L. Tomsett, and K. M. Helgen. 2019. Sex biases in bird and mammal natural history collections. Proceedings of the Royal Society B: Biological Sciences 286: 20192025. https://doi.org/10.1098/rspb.2019.2025
Natural history specimens are widely used across ecology, evolutionary biology and conservation. Although biological sex may influence all of these areas, it is often overlooked in large-scale studies using museum specimens. If collections are biased towards one sex, studies may not be representativ…
Li, X., B. Li, G. Wang, X. Zhan, and M. Holyoak. 2020. Deeply digging the interaction effect in multiple linear regressions using a fractional-power interaction term. MethodsX 7: 101067. https://doi.org/10.1016/j.mex.2020.101067
In multiple regression Y ~ β0 + β1X1 + β2X2 + β3X1 X2 + ɛ., the interaction term is quantified as the product of X1 and X2. We developed fractional-power interaction regression (FPIR), using βX1M X2N as the interaction term. The rationale of FPIR is that the slopes of Y-X1 regression along the X2 gr…
Menegotto, A., T. F. Rangel, J. Schrader, P. Weigelt, and H. Kreft. 2019. A global test of the subsidized island biogeography hypothesis A. M. C. dos Santos [ed.],. Global Ecology and Biogeography 29: 320–330. https://doi.org/10.1111/geb.13032
Aim: The decreasing capacity of area to predict species richness on small islands (the small‐island effect; SIE) seems to be one of the few exceptions of the species–area relationship. While most studies have focused on how to detect the SIE, the underlying ecological factors determining this patter…
Liu, X., T. M. Blackburn, T. Song, X. Li, C. Huang, and Y. Li. 2019. Risks of Biological Invasion on the Belt and Road. Current Biology 29: 499-505.e4. https://doi.org/10.1016/j.cub.2018.12.036
China’s Belt and Road Initiative (BRI) is an unprecedented global development program that involves nearly half of the world’s countries [1]. It not only will have economic and political influences, but also may generate multiple environmental challenges and is a focus of considerable academic and p…