Science Enabled by Specimen Data

Marcussen, T., H. E. Ballard, J. Danihelka, A. R. Flores, M. V. Nicola, and J. M. Watson. 2022. A Revised Phylogenetic Classification for Viola (Violaceae). Plants 11: 2224. https://doi.org/10.3390/plants11172224

The genus Viola (Violaceae) is among the 40–50 largest genera among angiosperms, yet its taxonomy has not been revised for nearly a century. In the most recent revision, by Wilhelm Becker in 1925, the then-known 400 species were distributed among 14 sections and numerous unranked groups. Here, we provide an updated, comprehensive classification of the genus, based on data from phylogeny, morphology, chromosome counts, and ploidy, and based on modern principles of monophyly. The revision is presented as an annotated global checklist of accepted species of Viola, an updated multigene phylogenetic network and an ITS phylogeny with denser taxon sampling, a brief summary of the taxonomic changes from Becker’s classification and their justification, a morphological binary key to the accepted subgenera, sections and subsections, and an account of each infrageneric subdivision with justifications for delimitation and rank including a description, a list of apomorphies, molecular phylogenies where possible or relevant, a distribution map, and a list of included species. We distribute the 664 species accepted by us into 2 subgenera, 31 sections, and 20 subsections. We erect one new subgenus of Viola (subg. Neoandinium, a replacement name for the illegitimate subg. Andinium), six new sections (sect. Abyssinium, sect. Himalayum, sect. Melvio, sect. Nematocaulon, sect. Spathulidium, sect. Xanthidium), and seven new subsections (subsect. Australasiaticae, subsect. Bulbosae, subsect. Clausenianae, subsect. Cleistogamae, subsect. Dispares, subsect. Formosanae, subsect. Pseudorupestres). Evolution within the genus is discussed in light of biogeography, the fossil record, morphology, and particular traits. Viola is among very few temperate and widespread genera that originated in South America. The biggest identified knowledge gaps for Viola concern the South American taxa, for which basic knowledge from phylogeny, chromosome counts, and fossil data is virtually absent. Viola has also never been subject to comprehensive anatomical study. Studies into seed anatomy and morphology are required to understand the fossil record of the genus.

Ward, S. F., E. G. Brockerhoff, R. M. Turner, T. Yamanaka, L. Marini, S. Fei, and A. M. Liebhold. 2022. Prevalence and drivers of a tree-killing bark beetle, Ips typographus (Coleoptera, Scolytinae), in international invasion pathways into the USA. Journal of Pest Science. https://doi.org/10.1007/s10340-022-01559-4

The unintentional transport of insects beyond their native ranges has greatly increased with globalization over the past century, leading to higher propagule pressure in non-native ranges of many species. Knowledge about the prevalence of a species in international invasion pathways is important for predicting invasions and taking appropriate biosecurity measures. We investigated the spatiotemporal patterns and drivers of interceptions—detections of at least one individual with imported goods that potentially serve as a proxy for arrival rates—for a tree-killing bark beetle, the European spruce bark beetle ( Ips typographus L.; Coleoptera: Curculionidae: Scolytinae), in the USA from 1914 to 2008. Across the study period, there were 505 interceptions of I. typographus with shipments originating from > 25 countries at ports in 22 US states. Interceptions first occurred in 1938, peaked at 33 and 25 in 1984 and 1996, respectively, and declined after the mid-1990s. Interceptions of I. typographus did not have a statistically detectable relationship with outbreak levels in the native range, were inversely related to annual import volume (an artifact likely driven by changes in inspection policies), and were more frequent during the winter. Thus, while interceptions of I. typographus are challenging to predict, we found evidence that (i) biosecurity practices against this beetle could be increased during winter but not in response to outbreaks in source regions and (ii) the overall abundance of this beetle in invasion pathways has recently decreased, probably because strengthened phytosanitary protocols have reduced contamination levels and/or decreased the perceived need for inspections.

Lu, L.-L., B.-H. Jiao, F. Qin, G. Xie, K.-Q. Lu, J.-F. Li, B. Sun, et al. 2022. Artemisia pollen dataset for exploring the potential ecological indicators in deep time. Earth System Science Data 14: 3961–3995. https://doi.org/10.5194/essd-14-3961-2022

Abstract. Artemisia, along with Chenopodiaceae, is the dominant component growing in the desert and dry grassland of the Northern Hemisphere. Artemisia pollen with its high productivity, wide distribution, and easy identification is usually regarded as an eco-indicator for assessing aridity and distinguishing grassland from desert vegetation in terms of the pollen relative abundance ratio of Chenopodiaceae/Artemisia (C/A). Nevertheless, divergent opinions on the degree of aridity evaluated by Artemisia pollen have been circulating in the palynological community for a long time. To solve the confusion, we first selected 36 species from nine clades and three outgroups of Artemisia based on the phylogenetic framework, which attempts to cover the maximum range of pollen morphological variation. Then, sampling, experiments, photography, and measurements were taken using standard methods. Here, we present pollen datasets containing 4018 original pollen photographs, 9360 pollen morphological trait measurements, information on 30 858 source plant occurrences, and corresponding environmental factors. Hierarchical cluster analysis on pollen morphological traits was carried out to subdivide Artemisia pollen into three types. When plotting the three pollen types of Artemisia onto the global terrestrial biomes, different pollen types of Artemisia were found to have different habitat ranges. These findings change the traditional concept of Artemisia being restricted to arid and semi-arid environments. The data framework that we designed is open and expandable for new pollen data of Artemisia worldwide. In the future, linking pollen morphology with habitat via these pollen datasets will create additional knowledge that will increase the resolution of the ecological environment in the geological past. The Artemisia pollen datasets are freely available at Zenodo (https://doi.org/10.5281/zenodo.6900308; Lu et al., 2022).

Contreras-Medina, R., M. Santiago-Alvarado, D. Espinosa, G. Rivas, and I. Luna-Vega. 2022. Distributional patterns and conservation of the genus Habromys (Rodentia: Cricetidae) in Mesoamerica. Studies on Neotropical Fauna and Environment: 1–17. https://doi.org/10.1080/01650521.2022.2085071

We analyzed the geographical distribution of Habromys species based on distributional data from museum specimens, web databases, and literature. We recorded species-presence data of each species in 0.5° × 0.5° grid cells and biogeographic provinces in Mexico and Central America. We analyzed the association between vegetation types and land use. We carried out species distribution models of most species of Habromys and those tree species frequently harboring these mice, finding a high distributional congruence among mice and trees. Species of Habromys occur throughout the montane systems of Mexico and northern Central America, so they can be considered characteristic elements of the Neotropical montane cloud forests. All species of the genus occur in Mexico, whereas Guatemala and El Salvador have only one species. Although all species of Habromys are highly restricted and considered rare species, only one (H. simulatus) is currently protected by Mexican laws. We assigned two species to a high and four to the critical conservation risk. Habromys species contribute to the recognition of Mesoamerica as a biodiversity hotspot.

Amaral, D. T., I. A. S. Bonatelli, M. Romeiro-Brito, E. M. Moraes, and F. F. Franco. 2022. Spatial patterns of evolutionary diversity in Cactaceae show low ecological representation within protected areas. Biological Conservation 273: 109677. https://doi.org/10.1016/j.biocon.2022.109677

Mapping biodiversity patterns across taxa and environments is crucial to address the evolutionary and ecological dimensions of species distribution, suggesting areas of particular importance for conservation purposes. Within Cactaceae, spatial diversity patterns are poorly explored, as are the abiotic factors that may predict these patterns. We gathered geographic and genetic data from 921 cactus species by exploring both the occurrence and genetic databases, which are tightly associated with drylands, to evaluate diversity patterns, such as phylogenetic diversity and endemism, paleo-, neo-, and superendemism, and the environmental predictor variables of such patterns in a global analysis. Hotspot areas of cacti diversity are scattered along the Neotropical and Nearctic regions, mainly in the desertic portion of Mesoamerica, Caribbean Island, and the dry diagonal of South America. The geomorphological features of these regions may create a complexity of areas that work as locally buffered zones over time, which triggers local events of diversification and speciation. Desert and dryland/dry forest areas comprise paleo- and superendemism and may act as both museums and cradles of species, displaying great importance for conservation. Past climates, topography, soil features, and solar irradiance seem to be the main predictors of distinct endemism types. The hotspot areas that encompass a major part of the endemism cells are outside or poorly covered by formal protection units. The current legally protected areas are not able to conserve the evolutionary diversity of cacti. Given the rapid anthropogenic disturbance, efforts must be reinforced to monitor biodiversity and the environment and to define/plan current and new protected areas.

Rewicz, A., M. Myśliwy, T. Rewicz, W. Adamowski, and M. Kolanowska. 2022. Contradictory effect of climate change on American and European populations of Impatiens capensis Meerb. - is this herb a global threat? Science of The Total Environment 850: 157959. https://doi.org/10.1016/j.scitotenv.2022.157959

AimsThe present study is the first-ever attempt to generate information on the potential present and future distribution of Impatiens capensis (orange balsam) under various climate change scenarios. Moreover, the differences in bioclimatic preferences of native and non-native populations were evaluated.LocationGlobal.TaxonAngiosperms.MethodsA database of I. capensis localities was compiled based on the public database – the Global Biodiversity Information Facility (GBIF), herbarium specimens, and a field survey in Poland. The initial dataset was verified, and each record was assigned to one of two groups – native (3664 records from North America) or non-native (750 records from Europe and the western part of North America). The analyses involved bioclimatic variables in 2.5 arc-minutes of interpolated climate surface downloaded from WorldClim v. 2.1. MaxEnt version 3.3.2 was used to conduct the ecological niche modeling based on presence-only observations of I. capensis. Forecasts of the future distribution of the climatic niches of the studied species in 2080–2100 were made based on climate projections developed by the CNRM/CERFACS modeling and Model for Interdisciplinary Research on Climate (MIROC-6).Main conclusionsDistribution models created for “present time” showed slightly broader potential geographical ranges of both native and invasive populations of orange balsam. On the other hand, some areas (e.g. NW Poland, SW Finland), settled by the species, are far outside the modeled climate niche, which indicates a much greater adaptation potential of I. capensis. In addition, the models have shown that climate change will shift the native range of orange balsam to the north and the range of its European populations to the northwest. Moreover, while the coverage of niches suitable for I. capensis in America will extend due to climate change, the European populations will face 31–95 % habitat loss.

Führding‐Potschkat, P., H. Kreft, and S. M. Ickert‐Bond. 2022. Influence of different data cleaning solutions of point‐occurrence records on downstream macroecological diversity models. Ecology and Evolution 12. https://doi.org/10.1002/ece3.9168

Digital point‐occurrence records from the Global Biodiversity Information Facility (GBIF) and other data providers enable a wide range of research in macroecology and biogeography. However, data errors may hamper immediate use. Manual data cleaning is time‐consuming and often unfeasible, given that the databases may contain thousands or millions of records. Automated data cleaning pipelines are therefore of high importance. Taking North American Ephedra as a model, we examined how different data cleaning pipelines (using, e.g., the GBIF web application, and four different R packages) affect downstream species distribution models (SDMs). We also assessed how data differed from expert data. From 13,889 North American Ephedra observations in GBIF, the pipelines removed 31.7% to 62.7% false positives, invalid coordinates, and duplicates, leading to datasets between 9484 (GBIF application) and 5196 records (manual‐guided filtering). The expert data consisted of 704 records, comparable to data from field studies. Although differences in the absolute numbers of records were relatively large, species richness models based on stacked SDMs (S‐SDM) from pipeline and expert data were strongly correlated (mean Pearson's r across the pipelines: .9986, vs. the expert data: .9173). Our results suggest that all R package‐based pipelines reliably identified invalid coordinates. In contrast, the GBIF‐filtered data still contained both spatial and taxonomic errors. Major drawbacks emerge from the fact that no pipeline fully discovered misidentified specimens without the assistance of taxonomic expert knowledge. We conclude that application‐filtered GBIF data will still need additional review to achieve higher spatial data quality. Achieving high‐quality taxonomic data will require extra effort, probably by thoroughly analyzing the data for misidentified taxa, supported by experts.

Tytar, V., O. Nekrasova, O. Marushchak, M. Pupins, A. Skute, A. Čeirāns, and I. Kozynenko. 2022. The Spread of the Invasive Locust Digitate Leafminer Parectopa robiniella Clemens, 1863 (Lepidoptera: Gracillariidae) in Europe, with Special Reference to Ukraine. Diversity 14: 605. https://doi.org/10.3390/d14080605

The spread and outbreaks of phytophagous pests are often associated with global warming. In addition to economic interest, these species may be of interest in terms of biological indication of climate changes. In this context, we considered the locust digitate leafminer Parectopa robiniella Clemens, 1863 (Lepidoptera: Gracillariidae). This phytophage was first discovered in Europe in 1970 near Milano in Italy. Since then, it has been spreading across the continent. In Ukraine, it was recorded for the first time in 2003. In 2020–2021, we found areas of massive leaf damage caused by the black locust (Robinia pseudoacacia) in locations on Trukhaniv Island in Kyiv and some places in the Kyiv administrative region. Using 1041 georeferenced records of P. robiniella across Europe and a Bayesian additive regression trees algorithm (BART), we modeled the distribution of the moth. Predictors of current climate (WorldClim v.2, CliMond v.1.2 and ENVIREM) and a black locust habitat suitability raster were employed. Sets of SDMs built for P. robiniella with and without the habitat suitability raster for the host tree performed equally well. Amongst the factors that determine the niche of the locust digitate leafminer, most important are temperature-related conditions assumed to facilitate the spread and naturalization of the pest. In Ukraine, the appearance of the moth has coincided with increasing mean annual temperatures. Particularly favorable for the species are areas in the west and south-west of the country, and Transcarpathia. In the near future, the moth could reach locations in Nordic countries, Estonia, the British Isles, Black Sea coastal areas in Turkey, further into Russia, etc.

Hirabayashi, K., S. J. Murch, and L. A. E. Erland. 2022. Predicted impacts of climate change on wild and commercial berry habitats will have food security, conservation and agricultural implications. Science of The Total Environment 845: 157341. https://doi.org/10.1016/j.scitotenv.2022.157341

Climate change is now a reality and is altering ecosystems, with Canada experiencing 2–4 times the global average rate of warming. This will have a critical impact on berry cultivation and horticulture. Enhancing our understanding of how wild and cultivated berries will perform under changing climates will be essential to mitigating impacts on ecosystems, culture and food security. Our objective was to predict the impact of climate change on habitat suitability of four berry producing Vaccinium species: two species with primarily northern distributions (V. uliginosum, V. vitis-idaea), one species with a primarily southern distribution (V. oxycoccos), and the commercially cultivated V. macrocarpon. We used the maximum entropy (Maxent) model and the CMIP6 shared socioeconomic pathways (SSPs) 126 and 585 projected to 2041–2060 and 2061–2080. Wild species showed a uniform northward progression and expansion of suitable habitat. Our modeling predicts that suitable growing regions for commercial cranberries are also likely to shift with some farms becoming unsuitable for the current varieties and other regions becoming more suitable for cranberry farms. Both V. macrocarpon and V. oxycoccos showed a high dependence on precipitation-associated variables. Vaccinium vitis-idaea and V. uliginosum had a greater number of variables with smaller contributions which may improve their resilience to individual climactic events. Future competition between commercial cranberry farms and wild berries in protected areas could lead to conflicts between agriculture and conservation priorities. New varieties of commercial berries are required to maintain current commercial berry farms.

Kendig, A. E., S. Canavan, P. J. Anderson, S. L. Flory, L. A. Gettys, D. R. Gordon, B. V. Iannone III, et al. 2022. Scanning the horizon for invasive plant threats using a data-driven approach. NeoBiota 74: 129–154. https://doi.org/10.3897/neobiota.74.83312

AbstractEarly detection and eradication of invasive plants are more cost-effective than managing well-established invasive plant populations and their impacts. However, there is high uncertainty around which taxa are likely to become invasive in a given area. Horizon scanning that combines a data-driven approach with rapid risk assessment and consensus building among experts can help identify invasion threats. We performed a horizon scan of potential invasive plant threats to Florida, USA—a state with a high influx of introduced species, conditions that are generally favorable for plant establishment, and a history of negative impacts from invasive plants. We began with an initial list of 2128 non-native plant taxa that are known invaders or crop pests. We built on previous invasive species horizon scans by developing data-based criteria to prioritize 100 taxa for rapid risk assessment. The semi-automated prioritization process included selecting taxa “on the horizon” (i.e., not yet in the target location and not on a noxious weed list) with climate matching, naturalization history, “weediness” record, and global commonness. We derived overall invasion risk scores with rapid risk assessment by evaluating the likelihood of each of the taxa arriving, establishing, and having an impact in Florida. Then, following a consensus-building discussion, we identified six plant taxa as high risk, with overall risk scores ranging from 75 to 100 out of a possible 125. The six taxa are globally distributed, easily transported to new areas, found in regions with climates similar to Florida’s, and can impact native plant communities, human health, or agriculture. Finally, we evaluated our initial and final lists for potential biases. Assessors tended to assign higher risk scores to taxa that had more available information. In addition, we identified biases towards four plant families and certain geographical regions of origin. Our horizon scan approach identified taxa conforming to metrics of high invasion risk and used a methodology refined for plants that can be applied to other locations.