Science Enabled by Specimen Data

Saldaña‐López, A., Vilà, M., Lloret, F., Manuel Herrera, J., & González‐Moreno, P. (2021). Assembly of species’ climatic niches of coastal communities does not shift after invasion. Journal of Vegetation Science, 32(2). doi:10.1111/jvs.12989 https://doi.org/10.1111/jvs.12989

Question: Do invasions by invasive plant species with contrasting trait profiles (Arctotheca calendula, Carpobrotus spp., Conyza bonariensis, and Opuntia dillenii) change the climatic niche of coastal plant communities? Location: Atlantic coastal habitats in Huelva (Spain). Methods: We identifi…

Büchi, L., Cordeau, S., Hull, R., & Rodenburg, J. (2020). Vulpia myuros , an increasing threat for agriculture. Weed Research. doi:10.1111/wre.12456 https://doi.org/10.1111/wre.12456

Vulpia myuros is an annual grass species of Mediterranean origin, which has achieved a global distribution. It is a fast‐growing species, with high colonisation and competitive abilities. This species is considered an invasive weed in most countries where it has been introduced, with highly negative…

Zanatta, F., Engler, R., Collart, F., Broennimann, O., Mateo, R. G., Papp, B., … Vanderpoorten, A. (2020). Bryophytes are predicted to lag behind future climate change despite their high dispersal capacities. Nature Communications, 11(1). doi:10.1038/s41467-020-19410-8 https://doi.org/10.1038/s41467-020-19410-8

The extent to which species can balance out the loss of suitable habitats due to climate warming by shifting their ranges is an area of controversy. Here, we assess whether highly efficient wind-dispersed organisms like bryophytes can keep-up with projected shifts in their areas of suitable climate.…

Goodwin, Z. A., Muñoz-Rodríguez, P., Harris, D. J., Wells, T., Wood, J. R. I., Filer, D., & Scotland, R. W. (2020). How long does it take to discover a species? Systematics and Biodiversity, 1–10. doi:10.1080/14772000.2020.1751339 https://doi.org/10.1080/14772000.2020.1751339

The description of a new species is a key step in cataloguing the World’s flora. However, this is only a preliminary stage in a long process of understanding what that species represents. We investigated how long the species discovery process takes by focusing on three key stages: 1, the collection …

Peyre, G., Lenoir, J., Karger, D. N., Gomez, M., Gonzalez, A., Broennimann, O., & Guisan, A. (2020). The fate of páramo plant assemblages in the sky islands of the northern Andes. Journal of Vegetation Science. doi:10.1111/jvs.12898 https://doi.org/10.1111/jvs.12898

Aims: Assessing climate change impacts on biodiversity is a main scientific challenge, especially in the tropics, therefore, we predicted the future of plant species and communities on the unique páramo sky islands. We implemented the Spatially Explicit Species Assemblage Modelling framework, by i) …

De Siracusa, P. C., Gadelha, L. M. R., & Ziviani, A. (2020). New perspectives on analysing data from biological collections based on social network analytics. Scientific Reports, 10(1). doi:10.1038/s41598-020-60134-y https://doi.org/10.1038/s41598-020-60134-y

Biological collections have been historically regarded as fundamental sources of scientific information on biodiversity. They are commonly associated with a variety of biases, which must be characterized and mitigated before data can be consumed. In this work, we are motivated by taxonomic and colle…

Howard, C. C., & Cellinese, N. (2020). Tunicate bulb size variation in monocots explained by temperature and phenology. Ecology and Evolution. doi:10.1002/ece3.5996 https://doi.org/10.1002/ece3.5996

Plant bulbs are modified shoot systems comprised of short internodes with apical bud(s) surrounded by layers of leaf bases. Bulb diameters can vary greatly, with overall bulb size playing a role in flower formation and resource allocation. Despite the importance of bulb size to the overall fitness o…

Pirie, M. D., Kandziora, M., Nürk, N. M., Le Maitre, N. C., Mugrabi de Kuppler, A., Gehrke, B., … Bellstedt, D. U. (2019). Leaps and bounds: geographical and ecological distance constrained the colonisation of the Afrotemperate by Erica. BMC Evolutionary Biology, 19(1). doi:10.1186/s12862-019-1545-6 https://doi.org/10.1186/s12862-019-1545-6

Background: The coincidence of long distance dispersal (LDD) and biome shift is assumed to be the result of a multifaceted interplay between geographical distance and ecological suitability of source and sink areas. Here, we test the influence of these factors on the dispersal history of the floweri…

Mezghani, N., Khoury, C. K., Carver, D., Achicanoy, H. A., Simon, P., Flores, F. M., & Spooner, D. (2019). Distributions and Conservation Status of Carrot Wild Relatives in Tunisia: A Case Study in the Western Mediterranean Basin. Crop Science, 0(0), 0. doi:10.2135/cropsci2019.05.0333 https://doi.org/10.2135/cropsci2019.05.0333

Crop wild relatives, the wild progenitors and closely related cousins of cultivated plant species, are sources of valuable genetic resources for crop improvement. Persisting gaps in knowledge of taxonomy, distributions, and characterization for traits of interest constrain their expanded use in plan…

Wan, J.-Z., Wang, C.-J., & Yu, F.-H. (2019). Large-scale environmental niche variation between clonal and non-clonal plant species: Roles of clonal growth organs and ecoregions. Science of The Total Environment, 652, 1071–1076. doi:10.1016/j.scitotenv.2018.10.280 https://doi.org/10.1016/j.scitotenv.2018.10.280

Clonal plant species can produce genetically identical and potentially independent offspring, and dominate a variety of habitats. The divergent evolutionary mechanisms between clonal and non-clonal plants are interesting areas of ecological research. A number of studies have shown that the environme…