Science Enabled by Specimen Data

Jiménez-López, D. A., M. J. Carmona-Higuita, G. Mendieta-Leiva, R. Martínez-Camilo, A. Espejo-Serna, T. Krömer, N. Martínez-Meléndez, and N. Ramírez-Marcial. 2023. Linking different resources to recognize vascular epiphyte richness and distribution in a mountain system in southeastern Mexico. Flora: 152261. https://doi.org/10.1016/j.flora.2023.152261

Mesoamerican mountains are important centers of endemism and diversity of epiphytes. The Sierra Madre of Chiapas in southeastern Mexico is a mountainous region of great ecological interest due to its high biological richness. We present the first checklist of epiphytes for this region based on a compilation of various information sources. In addition, we determined the conservation status for each species based on the Mexican Official Standard (NOM-059-SEMARNAT-2010), endemism based on geopolitical boundaries, spatial completeness with inventory completeness index, richness distribution with range maps, and the relationship between climatic variables (temperature and rainfall) with species richness using generalized additive models. Our dataset includes 9,799 records collected between 1896-2017. Our checklist includes 708 epiphytes within 160 genera and 26 families; the most species-rich family was Orchidaceae (355 species), followed by Bromeliaceae (82) and Polypodiaceae (79). There were 74 species within a category of risk and 59 species considered endemic. Completeness of epiphyte richness suggests that sampling is still largely incomplete, particularly in the lower parts of the mountain system. Species and family range maps show the highest richness at high elevations, while geographically richness increases towards the southeast. Epiphyte richness increases with increased rainfall, although a unimodal pattern was observed along the temperature gradient with a species richness peak between 16-20 C°. The Sierra Madre of Chiapas forms a refuge to more than 40% of all epiphytes reported for Mexico and its existing network of protected areas overlaps with the greatest epiphyte richness.

Reichgelt, T., A. Baumgartner, R. Feng, and D. A. Willard. 2023. Poleward amplification, seasonal rainfall and forest heterogeneity in the Miocene of the eastern USA. Global and Planetary Change 222: 104073. https://doi.org/10.1016/j.gloplacha.2023.104073

Paleoclimate reconstructions can provide a window into the environmental conditions in Earth history when atmospheric carbon dioxide concentrations were higher than today. In the eastern USA, paleoclimate reconstructions are sparse, because terrestrial sedimentary deposits are rare. Despite this, the eastern USA has the largest population and population density in North America, and understanding the effects of current and future climate change is of vital importance. Here, we provide terrestrial paleoclimate reconstructions of the eastern USA from Miocene fossil floras. Additionally, we compare proxy paleoclimate reconstructions from the warmest period in the Miocene, the Miocene Climatic Optimum (MCO), to those of an MCO Earth System Model. Reconstructed Miocene temperatures and precipitation north of 35°N are higher than modern. In contrast, south of 35°N, temperatures and precipitation are similar to today, suggesting a poleward amplification effect in eastern North America. Reconstructed Miocene rainfall seasonality was predominantly higher than modern, regardless of latitude, indicating greater variability in intra-annual moisture transport. Reconstructed climates are almost uniformly in the temperate seasonal forest biome, but heterogeneity of specific forest types is evident. Reconstructed Miocene terrestrial temperatures from the eastern USA are lower than modeled temperatures and coeval Atlantic sea surface temperatures. However, reconstructed rainfall is consistent with modeled rainfall. Our results show that during the Miocene, climate was most different from modern in the northeastern states, and may suggest a drastic reduction in the meridional temperature gradient along the North American east coast compared to today.

Smith, A. B., S. J. Murphy, D. Henderson, and K. D. Erickson. 2023. Including imprecisely georeferenced specimens improves accuracy of species distribution models and estimates of niche breadth. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13628

Aim Museum and herbarium specimen records are frequently used to assess the conservation status of species and their responses to climate change. Typically, occurrences with imprecise geolocality information are discarded because they cannot be matched confidently to environmental conditions and are thus expected to increase uncertainty in downstream analyses. However, using only precisely georeferenced records risks undersampling of the environmental and geographical distributions of species. We present two related methods to allow the use of imprecisely georeferenced occurrences in biogeographical analysis. Innovation Our two procedures assign imprecise records to the (1) locations or (2) climates that are closest to the geographical or environmental centroid of the precise records of a species. For virtual species, including imprecise records alongside precise records improved the accuracy of ecological niche models projected to the present and the future, especially for species with c. 20 or fewer precise occurrences. Using only precise records underestimated loss of suitable habitat and overestimated the amount of suitable habitat in both the present and the future. Including imprecise records also improves estimates of niche breadth and extent of occurrence. An analysis of 44 species of North American Asclepias (Apocynaceae) yielded similar results. Main conclusions Existing studies examining the effects of spatial imprecision typically compare outcomes based on precise records against the same records with spatial error added to them. However, in real-world cases, analysts possess a mix of precise and imprecise records and must decide whether to retain or discard the latter. Discarding imprecise records can undersample the geographical and environmental distributions of species and lead to mis-estimation of responses to past and future climate change. Our method, for which we provide a software implementation in the enmSdmX package for R, is simple to use and can help leverage the large number of specimen records that are typically deemed “unusable” because of spatial imprecision in their geolocation.

Adhikari, P., Y.-H. Lee, A. Poudel, G. Lee, S.-H. Hong, and Y.-S. Park. 2023. Predicting the Impact of Climate Change on the Habitat Distribution of Parthenium hysterophorus around the World and in South Korea. Biology 12: 84. https://doi.org/10.3390/biology12010084

The global climate change, including increases in temperature and precipitation, may exacerbate the invasion by P. hysterophorus. Here, MaxEnt modeling was performed to predict P. hysterophorus distribution worldwide and in South Korea under the current and future climate global climate changes, including increases in temperature and precipitation. Under the current climate, P. hysterophorus was estimated to occupy 91.26%, 83.26%, and 62.75% of the total land area of Australia, South America, and Oceania, respectively. However, under future climate scenarios, the habitat distribution of P. hysterophorus would show the greatest change in Europe (56.65%) and would extend up to 65°N by 2081–2100 in South Korea, P. hysterophorus currently potentially colonizing 2.24% of the land area, particularly in six administrative divisions. In the future, P. hysterophorus would spread rapidly, colonizing all administrative divisions, except Incheon, by 2081–2100. Additionally, the southern and central regions of South Korea showed greater habitat suitability than the northern region. These findings suggest that future climate change will increase P. hysterophorus distribution both globally and locally. Therefore, effective control and management strategies should be employed around the world and in South Korea to restrict the habitat expansion of P. hysterophorus.

Gómez Díaz, J. A., A. Lira-Noriega, and F. Villalobos. 2023. Expanding protected areas in a Neotropical hotspot. International Journal of Sustainable Development & World Ecology: 1–15. https://doi.org/10.1080/13504509.2022.2163717

The region of central Veracruz is considered a biodiversity hotspot due to its high species richness and environmental heterogeneity, but only 2% of this region is currently protected. This study aimed to assess the current protected area system’s effectiveness and to identify priority conservation areas for expanding the existing protected area system. We used the distribution models of 1186 species from three kingdoms (Animalia, Plantae, and Fungi) together with ZONATION software, a conservation planning tool, to determine areas that could help expand the current network of protected areas. We applied three different parametrizations (including only species, using the boundary quality penalty, and using corridor connectivity). We found that protecting an additional 15% of the area would increase, between 16.2% and 19.3%, the protection of the distribution area of all species. We propose that the regions with a consensus of the three parametrizations should be declared as new protected areas to expand 374 km2 to the 216 km2 already protected. Doing so would double the protected surface in central Veracruz. The priority areas identified in this study have more species richness, carbon stock values, natural vegetation cover, and less human impact index than the existing protected areas. If our identified priority areas are declared protected, we could expect a future recovery of endangered species populations for Veracruz. The proposed new protected areas are planned and designed as corridors connecting currently isolated protected areas to promote biodiversity protection.

Baltensperger, A., J. Hagelin, P. Schuette, A. Droghini, and K. Ott. 2022. High dietary and habitat diversity indicate generalist behaviors of northern bog lemmings Synaptomys borealis in Alaska, USA. Endangered Species Research 49: 145–158. https://doi.org/10.3354/esr01211

The northern bog lemming Synaptomys borealis (NBL) is a rare small mammal that is undergoing a federal Species Status Assessment (SSA) under the US Endangered Species Act. Despite a wide North American distribution, very little is known about NBL dietary or habitat needs, both of which are germane to the resiliency of this species to climate change. To quantify diet composition of NBL in Alaska, we used DNA metabarcoding from 59 archived specimens to describe the taxonomic richness and relative abundance of foods in recent diets. DNA analyses revealed a broad diet composed of at least 110 families and 92 genera of bryophytes (mosses and liverworts), graminoids, fungi, forbs, and woody shrubs. Nine bryophyte genera and Carex sedges composed the largest portions of NBL diets. To quantify habitat preference, we intersected 467 georeferenced occurrence records of NBL in Alaska with remotely sensed land cover classes and used a compositional analysis framework that accounts for the relative abundance of land cover types. We did not detect significant habitat preferences for specific land cover types, although NBL frequently occurred in evergreen forest, woody wetlands, and adjacent to water. Our research highlights the importance of bryophytes, among a high diversity of dietary components, and describes NBL as boreal habitat generalists. Results will inform the current federal SSA by quantifying the extent to which ecological constraints are likely to affect NBL in a rapidly changing boreal environment.

Campbell, L. C. E., E. T. Kiers, and G. Chomicki. 2022. The evolution of plant cultivation by ants. Trends in Plant Science. https://doi.org/10.1016/j.tplants.2022.09.005

Outside humans, true agriculture was previously thought to be restricted to social insects farming fungus. However, obligate farming of plants by ants was recently discovered in Fiji, prompting a re-examination of plant cultivation by ants. Here, we generate a database of plant cultivation by ants, identify three main types, and show that these interactions evolved primarily for shelter rather than food. We find that plant cultivation evolved at least 65 times independently for crops (~200 plant species), and 15 times in farmer lineages (~37 ant taxa) in the Neotropics and Asia/Australasia. Because of their high evolutionary replication, and variation in partner dependence, these systems are powerful models to unveil the steps in the evolution and ecology of insect agriculture.

García, L., J. Veneros, S. Chavez, M. Oliva, and N. B. Rojas Briceño. 2022. World historical mapping and potential distribution of Cinchona spp. in Peru as a contribution for its restoration and conservation. Journal for Nature Conservation: 126290. https://doi.org/10.1016/j.jnc.2022.126290

Peru is a megadiverse country in neotropical flora and is home to an important genus of plants called Cinchona and commonly all its individual species are called Cinchona Tree (Cinchona spp.), which represents the national tree for this nation. This country has 18 species, a group of these species are listed as vulnerable, endangered, and their population trend is currently unknown. This genus is at risk of extinction due to overexploitation for its medicinal, constructive and food uses. The IUCN also mentions that increased species assessments and records will help make the IUCN Red List a “barometer of life”. Based on the fact that understanding the effects of environmental change on ecosystems requires the identification of historical and current baselines, which can act as reference conditions, this research generated georeferenced global historical maps of Cinchona spp. and then determined the appropriate sites based on environmental variables using the Maxent software and established the probabilities of occurrence of this genus in Peru to establish priority areas for its conservation and restoration. Four maps were obtained, one for each centennial, from 1737 to the present, with 10,860 occurrences of Cinchona. In the MaxEnt modeling, 10.30 % (13 3172.56 km2) and 19.20 % (24 7371.32 km2) of Peru's surface area had high (> 0.6) and moderate (0.4 - 0.6) probabilities, respectively, of hosting Cinchona. Only 7.6 % (17 305.32 km2) and 22.0 % (50 153.73 km2) of the areas with high and moderate distribution potential, respectively, were covered by natural protected areas. Likewise, 11.90 % (21 738.75 km2) and 33.20 % (60 789.17 km2) of the high and moderate probability lands, respectively, correspond to degraded areas (DAs) and, therefore, are considered a priority for restoration with Cinchona spp. The results may stimulate the rethinking of decision making for the National Action Plan for Reforestation with Species of the Genus Cinchona and other plans or tools for Cinchona conservation in Peru.

Ward, S. F., E. G. Brockerhoff, R. M. Turner, T. Yamanaka, L. Marini, S. Fei, and A. M. Liebhold. 2022. Prevalence and drivers of a tree-killing bark beetle, Ips typographus (Coleoptera, Scolytinae), in international invasion pathways into the USA. Journal of Pest Science. https://doi.org/10.1007/s10340-022-01559-4

The unintentional transport of insects beyond their native ranges has greatly increased with globalization over the past century, leading to higher propagule pressure in non-native ranges of many species. Knowledge about the prevalence of a species in international invasion pathways is important for predicting invasions and taking appropriate biosecurity measures. We investigated the spatiotemporal patterns and drivers of interceptions—detections of at least one individual with imported goods that potentially serve as a proxy for arrival rates—for a tree-killing bark beetle, the European spruce bark beetle ( Ips typographus L.; Coleoptera: Curculionidae: Scolytinae), in the USA from 1914 to 2008. Across the study period, there were 505 interceptions of I. typographus with shipments originating from > 25 countries at ports in 22 US states. Interceptions first occurred in 1938, peaked at 33 and 25 in 1984 and 1996, respectively, and declined after the mid-1990s. Interceptions of I. typographus did not have a statistically detectable relationship with outbreak levels in the native range, were inversely related to annual import volume (an artifact likely driven by changes in inspection policies), and were more frequent during the winter. Thus, while interceptions of I. typographus are challenging to predict, we found evidence that (i) biosecurity practices against this beetle could be increased during winter but not in response to outbreaks in source regions and (ii) the overall abundance of this beetle in invasion pathways has recently decreased, probably because strengthened phytosanitary protocols have reduced contamination levels and/or decreased the perceived need for inspections.

Coca‐de‐la‐Iglesia, M., N. G. Medina, J. Wen, and V. Valcárcel. 2022. Evaluation of the tropical‐temperate transitions: An example of climatic characterization in the Asian Palmate group of Araliaceae. American Journal of Botany. https://doi.org/10.1002/ajb2.16059

(no abstract available)