Science Enabled by Specimen Data

Yang, W., Ma, Y., Jing, L., Wang, S., Sun, Z., Tang, Y., & Li, H. (2022). Differential Impacts of Climatic and Land Use Changes on Habitat Suitability and Protected Area Adequacy across the Asian Elephant’s Range. Sustainability, 14(9), 4933. https://doi.org/10.3390/su14094933 https://doi.org/10.3390/su14094933

Climate change and human activities have caused dramatic impacts on biodiversity. Although a number of international agreements or initiatives have been launched to mitigate the biodiversity loss, the erosion of terrestrial biome habitats is inevitable. Consequently, the identification of potential suitable habitats under climate change and human disturbance has become an urgent task of biodiversity conservation. In this study, we used the maximum entropy model (MaxEnt) to identify the current and potential future habitats of Asian elephants in South and Southeast Asia. We performed analyses for future projections with 17 scenarios using the present results as baseline. To optimize the modelling results, we delineated the core habitats by using the Core Mapper Tool and compared them with existing protected areas (PAs) through gap analysis. The results showed that the current total area of core habitats is 491,455 km2 in size and will be reduced to 332,544 km2 by 2090 under SSP585 (the shared socioeconomic pathway). The projection analysis under differential scenarios suggested that most of the core habitats in the current protected areas would remain stable and suitable for elephants in the future. However, the remaining 75.17% of the core habitats lay outside the current PAs, and finally we mapped approximately 219,545 km2 of suitable habitats as priority protected areas in the future. Although our model did not perform well in some regions, our analyses and findings still could provide useful references to the planning of protected areas and conservation of Asian elephant.

McGowan, N. E., Roche, N., Aughney, T., Flanagan, J., Nolan, P., Marnell, F., & Reid, N. (2021). Testing consistency of modelled predictions of the impact of climate change on bats. Climate Change Ecology, 2, 100011. doi:10.1016/j.ecochg.2021.100011 https://doi.org/10.1016/j.ecochg.2021.100011

Species Distribution Models (SDMs) are a cornerstone of climate change conservation research but temporal extrapolations into future climate scenarios cannot be verified until later this century. One way of assessing the robustness of projections is to compare their consistency between different mod…

Wieringa, J. G., Carstens, B. C., & Gibbs, H. L. (2021). Predicting migration routes for three species of migratory bats using species distribution models. PeerJ, 9, e11177. doi:10.7717/peerj.11177 https://doi.org/10.7717/peerj.11177

Understanding seasonal variation in the distribution and movement patterns of migratory species is essential to monitoring and conservation efforts. While there are many species of migratory bats in North America, little is known about their seasonal movements. In terms of conservation, this is impo…

Li, X., Li, B., Wang, G., Zhan, X., & Holyoak, M. (2020). Deeply digging the interaction effect in multiple linear regressions using a fractional-power interaction term. MethodsX, 7, 101067. doi:10.1016/j.mex.2020.101067 https://doi.org/10.1016/j.mex.2020.101067

In multiple regression Y ~ β0 + β1X1 + β2X2 + β3X1 X2 + ɛ., the interaction term is quantified as the product of X1 and X2. We developed fractional-power interaction regression (FPIR), using βX1M X2N as the interaction term. The rationale of FPIR is that the slopes of Y-X1 regression along the X2 gr…

Pappalardo, P., Morales‐Castilla, I., Park, A. W., Huang, S., Schmidt, J. P., & Stephens, P. R. (2019). Comparing methods for mapping global parasite diversity. Global Ecology and Biogeography. doi:10.1111/geb.13008 https://doi.org/10.1111/geb.13008

Aim: Parasites are a major component of global ecosystems, yet spatial variation in parasite diversity is poorly known, largely because their occurrence data are limited and thus difficult to interpret. Using a recently compiled database of parasite occurrences, we compare different models which we …