Science Enabled by Specimen Data

Castaño-Quintero, S. M., J. Escobar-Luján, F. Villalobos, L. M. Ochoa-Ochoa, and C. Yáñez-Arenas. 2022. Amphibian Diversity of the Yucatan Peninsula: Representation in Protected Areas and Climate Change Impacts. Diversity 14: 813. https://doi.org/10.3390/d14100813

Knowledge about the dynamics of regional diversity patterns is a foundation on which measures aimed to protect diversity dimensions in the light of climate change can be constructed. Here, we describe taxonomic, phylogenetic, and functional diversity patterns of amphibians in the Yucatan Peninsula and their representation in the current protected area system. We stacked current and future potential distribution models to estimate taxonomic diversity and, based on the most recent amphibian phylogeny and nine functional traits, we measured phylogenetic and functional diversity. Independent phylogenetic and functional metrics were obtained by applying null models that allowed us to identify the presumably signature mechanisms underlying assemblage formation. We evaluated the effectiveness of the protected areas in protecting diversity dimensions across scenarios. We found phylogenetic and functional clustering as a result of environmental filters that have allowed only recently diverged species with converged functional traits to establish. Nevertheless, random assemblages are more widespread possibly due to the opposite directions in which competition and environmental filtering are acting. Overall, a decrease in all diversity dimensions is projected under future climate change scenarios compared with the current time. None of the protected areas evaluated were effective in protecting diversity dimensions, stressing the need to complete the existing protected areas network.

Li, D., Z. Li, Z. Liu, Y. Yang, A. G. Khoso, L. Wang, and D. Liu. 2022. Climate change simulations revealed potentially drastic shifts in insect community structure and crop yields in China’s farmland. Journal of Pest Science. https://doi.org/10.1007/s10340-022-01479-3

Climate change will cause drastic fluctuations in agricultural ecosystems, which in turn may affect global food security. We used ecological niche modeling to predict the potential distribution for four cereal aphids (i.e., Sitobion avenae, Rhopalosiphum padi, Schizaphis graminum, and Diurphis noxia…

Méndez-Camacho, K., O. Leon-Alvarado, and D. R. Miranda-Esquivel. 2021. Biogeographic evidence supports the Old Amazon hypothesis for the formation of the Amazon fluvial system. PeerJ 9: e12533. https://doi.org/10.7717/peerj.12533

The Amazon has high biodiversity, which has been attributed to different geological events such as the formation of rivers. The Old and Young Amazon hypotheses have been proposed regarding the date of the formation of the Amazon basin. Different studies of historical biogeography support the Young A…

Boyd, R. J., G. D. Powney, C. Carvell, and O. L. Pescott. 2021. occAssess: An R package for assessing potential biases in species occurrence data. Ecology and Evolution 11: 16177–16187. https://doi.org/10.1002/ece3.8299

Species occurrence records from a variety of sources are increasingly aggregated into heterogeneous databases and made available to ecologists for immediate analytical use. However, these data are typically biased, i.e. they are not a probability sample of the target population of interest, meaning …

Lee, C. M., D.-S. Lee, T.-S. Kwon, M. Athar, and Y.-S. Park. 2021. Predicting the Global Distribution of Solenopsis geminata (Hymenoptera: Formicidae) under Climate Change Using the MaxEnt Model. Insects 12: 229. https://doi.org/10.3390/insects12030229

The tropical fire ant Solenopsis geminata (Hymenoptera: Formicidae) is a serious invasive species that causes a decline in agricultural production, damages infrastructure, and harms human health. This study was aimed to develop a model using the maximum entropy (MaxEnt) algorithm to predict the curr…

Andersen, D., A. Borzée, and Y. Jang. 2021. Predicting global climatic suitability for the four most invasive anuran species using ecological niche factor analysis. Global Ecology and Conservation 25: e01433. https://doi.org/10.1016/j.gecco.2020.e01433

Invasive species have a massive impact on their environment and predicting geographical zones at risk of invasion is paramount to the control of further invasions. Invasive anurans are particularly detrimental to native amphibian species, other vertebrates, and even aquaculture through competition, …

Benavides, L. R., R. Pinto-da-Rocha, and G. Giribet. 2021. The Phylogeny and Evolution of the Flashiest of the Armored Harvestmen (Arachnida: Opiliones) L. Barrow [ed.],. Systematic Biology 70: 648–659. https://doi.org/10.1093/sysbio/syaa080

Gonyleptoidea, largely restricted to the Neotropics, constitutes the most diverse superfamily of Opiliones and includes the largest and flashiest representatives of this arachnid order. However, the relationships among its main lineages (families and superfamilies) and the timing of their origin are…

Li, X., B. Li, G. Wang, X. Zhan, and M. Holyoak. 2020. Deeply digging the interaction effect in multiple linear regressions using a fractional-power interaction term. MethodsX 7: 101067. https://doi.org/10.1016/j.mex.2020.101067

In multiple regression Y ~ β0 + β1X1 + β2X2 + β3X1 X2 + ɛ., the interaction term is quantified as the product of X1 and X2. We developed fractional-power interaction regression (FPIR), using βX1M X2N as the interaction term. The rationale of FPIR is that the slopes of Y-X1 regression along the X2 gr…

Liu, X., T. M. Blackburn, T. Song, X. Wang, C. Huang, and Y. Li. 2020. Animal invaders threaten protected areas worldwide. Nature Communications 11. https://doi.org/10.1038/s41467-020-16719-2

Protected areas are the cornerstone of biodiversity conservation. However, alien species invasion is an increasing threat to biodiversity, and the extent to which protected areas worldwide are resistant to incursions of alien species remains poorly understood. Here, we investigate establishment by 8…

Pili, A. N., R. Tingley, E. Y. Sy, M. L. L. Diesmos, and A. C. Diesmos. 2020. Niche shifts and environmental non-equilibrium undermine the usefulness of ecological niche models for invasion risk assessments. Scientific Reports 10. https://doi.org/10.1038/s41598-020-64568-2

Niche shifts and environmental non-equilibrium in invading alien species undermine niche-based predictions of alien species’ potential distributions and, consequently, their usefulness for invasion risk assessments. Here, we compared the realized climatic niches of four alien amphibian species (Hyla…