Science Enabled by Specimen Data

Boone, M. L., Z. M. Portman, I. Lane, and S. Rao. 2023. Occupancy of Bombus affinis (Hymenoptera: Apidae) in Minnesota is highest in developed areas when standardized surveys are employed D. Lupi [ed.],. Environmental Entomology. https://doi.org/10.1093/ee/nvad088

Mounting evidence of bumble bee declines and the listing of the rusty patched bumble bee (Bombus affinis Cresson) as federally endangered in the United States in 2017 and Canada in 2012 has stimulated an interest in monitoring and conservation. Understanding the influence of land use on occupancy patterns of imperiled species is crucial to successful recovery planning. Using detection data from community surveys, we assessed land use associations for 7 bumble bee species in Minnesota, USA, including B. affinis. We used multispecies occupancy models to assess the effect of 3 major land use types (developed, agricultural, and natural) within 0.5 and 1.5 km on occupancy of 7 Bombus (Hymenoptera: Apidae) species, while accounting for detection uncertainty. We found that B. affinis occupancy and detection were highest in developed landscapes and lowest in agricultural landscapes, representing an inverse relationship with the relative landcover ratios of these landscapes in Minnesota. Occupancy of 2 bumble bee species had strong positive associations with natural landscapes within 1.5 km and 2 species had strong negative associations with agricultural landscapes within 1.5 km. Our results suggest that best practices for imperiled Bombus monitoring and recovery planning depends upon the surrounding major land use patterns. We provide recommendations for urban planning to support B. affinis based on conservation success in the metropolitan areas of Minneapolis-St. Paul. We also encourage substantial survey effort be employed in agricultural and natural regions of the state historically occupied by B. affinis to determine the current occupancy state.

Medzihorský, V., J. Trombik, R. Mally, M. Turčáni, and A. M. Liebhold. 2023. Insect invasions track a tree invasion: Global distribution of black locust herbivores. Journal of Biogeography. https://doi.org/10.1111/jbi.14625

Aim Many invasive plant species benefit from enemy release resulting from the absence of insect herbivores in their invaded range. However, over time, specialized herbivores may ‘catch up’ with such invasive plants. Black locust is a tree species with a relatively limited native range in North America but has invaded large areas in virtually every temperate continent including North America. We hypothesize that both intra- and intercontinental spread of black locust leads to a parallel, though delayed pattern of intra- and intercontinental spread of insect herbivores. Location Global. Taxon Black locust, Robinia pseudoacacia, and its insect herbivores. Methods We compiled historical records of the occurrence of insect herbivore species associated with R. pseudoacacia from all world regions. Based on this list, we describe taxonomic patterns and investigate associations between environmental features and numbers of non-native specialist herbivores in the portion of North America invaded by R. pseudoacacia. Results A total of 454 herbivorous species are recorded feeding on R. pseudoacacia across the world, with 23 of these being specialized on Robinia. From this group, seven species have successfully expanded their range beyond North America. Within North America, the richness of specialists is explained by a combination of road density, R. pseudoacacia density, distance from the R. pseudoacacia native range, and climate. Main Conclusion Non-native herbivore species have accumulated on invasive R. pseudoacacia in both North America and in other continents. The steady build-up of invasions likely has diminished the enemy release that this invasive tree species has benefited from – a trend that will likely continue in the future. These findings support the hypothesis that invasive plants promote parallel though delayed invasions of specialist insect herbivores.

Kolanowska, M. 2023. Loss of fungal symbionts and changes in pollinator availability caused by climate change will affect the distribution and survival chances of myco-heterotrophic orchid species. Scientific Reports 13. https://doi.org/10.1038/s41598-023-33856-y

The first comprehensive species distribution models for orchid, its fungal symbionts and pollinator are presented. To evaluate impact of global warming on these organisms three different projections and four various climate change scenarios were analysed. The niche modelling was based on presence-only records of Limodorum abortivum , two species of Russula and three insects pollinating orchid ( Anthophora affinis, Bombus terrestris, Rhodanthidium septemdentatum ). Two sets of orchid predictions were examined—the first one included only climatic data and the second one was based on climate data and data on future distribution of orchid fungal symbionts. Overall, a poleward range shift is predicted to occur as a result of climate change and apparently global warming will be favorable for L. abortivum and its potential geographical range will expand. However, due to the negative effect of global warming on fungal symbionts of L. abortivum , the actual extension of the suitable niches of the orchid will be much limited. Considering future possibility of cross-pollination, the availability of A. affinis for L. abortivum will decrease and this bee will be available in the worst case scenarios only for 21% of orchid populations. On the other hand, the overlap of orchid and the buff-tailed bumblebee will increase and as much as 86.5% of plant populations will be located within B. terrestris potential range. Also the availability of R. septemdentatum will be higher than currently observed in almost all analysed climate change projections. This study showed the importance of inclusion of ecological factors in species distribution models as the climate data itself are not enough to estimate the future distribution of plant species. Moreover, the availability of pollen vectors which is crucial for long-term survival of orchid populations should be analysed in context of climate changes.

Grigoropoulou, A., S. A. Hamid, R. Acosta, E. O. Akindele, S. A. Al‐Shami, F. Altermatt, G. Amatulli, et al. 2023. The global EPTO database: Worldwide occurrences of aquatic insects. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13648

Motivation Aquatic insects comprise 64% of freshwater animal diversity and are widely used as bioindicators to assess water quality impairment and freshwater ecosystem health, as well as to test ecological hypotheses. Despite their importance, a comprehensive, global database of aquatic insect occurrences for mapping freshwater biodiversity in macroecological studies and applied freshwater research is missing. We aim to fill this gap and present the Global EPTO Database, which includes worldwide geo-referenced aquatic insect occurrence records for four major taxa groups: Ephemeroptera, Plecoptera, Trichoptera and Odonata (EPTO). Main type of variables contained A total of 8,368,467 occurrence records globally, of which 8,319,689 (99%) are publicly available. The records are attributed to the corresponding drainage basin and sub-catchment based on the Hydrography90m dataset and are accompanied by the elevation value, the freshwater ecoregion and the protection status of their location. Spatial location and grain The database covers the global extent, with 86% of the observation records having coordinates with at least four decimal digits (11.1 m precision at the equator) in the World Geodetic System 1984 (WGS84) coordinate reference system. Time period and grain Sampling years span from 1951 to 2021. Ninety-nine percent of the records have information on the year of the observation, 95% on the year and month, while 94% have a complete date. In the case of seven sub-datasets, exact dates can be retrieved upon communication with the data contributors. Major taxa and level of measurement Ephemeroptera, Plecoptera, Trichoptera and Odonata, standardized at the genus taxonomic level. We provide species names for 7,727,980 (93%) records without further taxonomic verification. Software format The entire tab-separated value (.csv) database can be downloaded and visualized at https://glowabio.org/project/epto_database/. Fifty individual datasets are also available at https://fred.igb-berlin.de, while six datasets have restricted access. For the latter, we share metadata and the contact details of the authors.

Sánchez Pérez, M., T. P. Feria Arroyo, C. S. Venegas Barrera, C. Sosa-Gutiérrez, J. Torres, K. A. Brown, and G. Gordillo Pérez. 2023. Predicting the Impact of Climate Change on the Distribution of Rhipicephalus sanguineus in the Americas. Sustainability 15: 4557. https://doi.org/10.3390/su15054557

Climate change may influence the incidence of infectious diseases including those transmitted by ticks. Rhipicephalus sanguineus complex has a worldwide distribution and transmits Rickettsial infections that could cause high mortality rates if untreated. We assessed the potential effects of climate change on the distribution of R. sanguineus in the Americas in 2050 and 2070 using the general circulation model CanESM5 and two shared socioeconomic pathways (SSPs), SSP2-4.5 (moderate emissions) and SSP2-8.5 (high emissions). A total of 355 occurrence points of R. sanguineus and eight uncorrelated bioclimatic variables were entered into a maximum entropy algorithm (MaxEnt) to produce 50 replicates per scenario. The area under the curve (AUC) value for the consensus model (>0.90) and the partial ROC value (>1.28) indicated a high predictive capacity. The models showed that the geographic regions currently suitable for R. sanguineus will remain stable in the future, but also predicted increases in habitat suitability in the Western U.S., Venezuela, Brazil and Bolivia. Scenario 4.5 showed an increase in habitat suitability for R. sanguineus in tropical and subtropical regions in both 2050 and 2070. Habitat suitability is predicted to remain constant in moist broadleaf forests and deserts but is predicted to decrease in flooded grasslands and savannas. Using the high emissions SSP5-8.5 scenario, habitat suitability in tropical and subtropical coniferous forests and temperate grasslands, savannas, and shrublands was predicted to be constant in 2050. In 2070, however, habitat suitability was predicted to decrease in tropical and subtropical moist broadleaf forests and increase in tropical and subtropical dry broadleaf forests. Our findings suggest that the current and potential future geographic distributions can be used in evidence-based strategies in the design of control plans aimed at reducing the risk of exposure to zoonotic diseases transmitted by R. sanguineus.

Rojas-Arias, L., D. Gómez-Morales, S. Stiegel, and R. Ospina-Torres. 2023. Niche modeling of bumble bee species (Hymenoptera, Apidae, Bombus) in Colombia reveals highly fragmented potential distribution for some species. Journal of Hymenoptera Research 95: 231–244. https://doi.org/10.3897/jhr.95.87752

AbstractInsect population decline has been reported worldwide, including those of pollinators important for ecosystem services. Therefore, conservation actions which rely on available rigorous species distribution data are necessary to protect biodiversity. Niche modeling is an appropriate approach to distribution maps, but when it comes to bumble bees, few studies have been performed in South America. We modeled ecological niches of nine Colombian Bombus species with MAXENT 3.4 software using bioclimatic variables available from WorldClim. This resulted in maps for each species that show the potential distribution area at the present time. Modeled species maps accurately represent potential niches according to the description of bioclimatic conditions in the species’ habitat. We grouped the species into three clusters based on our results, as well as on distributional information from literature on the topic: High Mountain, Mid- Mountain and inter-Andean, and the Amazon and Eastern Plains Basin. Niche modeling depicted bumble bee species’ distribution in Colombia, the results of which can serve as a useful tool for conservation policies in the country.

Chiarenza, A. A., A. M. Waterson, D. N. Schmidt, P. J. Valdes, C. Yesson, P. A. Holroyd, M. E. Collinson, et al. 2022. 100 million years of turtle paleoniche dynamics enable the prediction of latitudinal range shifts in a warming world. Current Biology. https://doi.org/10.1016/j.cub.2022.11.056

Past responses to environmental change provide vital baseline data for estimating the potential resilience of extant taxa to future change. Here, we investigate the latitudinal range contraction that terrestrial and freshwater turtles (Testudinata) experienced from the Late Cretaceous to the Paleogene (100.5–23.03 mya) in response to major climatic changes. We apply ecological niche modeling (ENM) to reconstruct turtle niches, using ancient and modern distribution data, paleogeographic reconstructions, and the HadCM3L climate model to quantify their range shifts in the Cretaceous and late Eocene. We then use the insights provided by these models to infer their probable ecological responses to future climate scenarios at different representative concentration pathways (RCPs 4.5 and 8.5 for 2100), which project globally increased temperatures and spreading arid biomes at lower to mid-latitudes. We show that turtle ranges are predicted to expand poleward in the Northern Hemisphere, with decreased habitat suitability at lower latitudes, inverting a trend of latitudinal range contraction that has been prevalent since the Eocene. Trionychids and freshwater turtles can more easily track their niches than Testudinidae and other terrestrial groups. However, habitat destruction and fragmentation at higher latitudes will probably reduce the capability of turtles and tortoises to cope with future climate changes.

Christman, M. E., L. R. Spears, J. B. U. Koch, T.-T. T. Lindsay, J. P. Strange, C. L. Barnes, and R. A. Ramirez. 2022. Captive Rearing Success and Critical Thermal Maxima of Bombus griseocollis (Hymenoptera: Apidae): A Candidate for Commercialization? J. Brunet [ed.],. Journal of Insect Science 22. https://doi.org/10.1093/jisesa/ieac064

Abstract Commercialized bumble bees (Bombus) are primary pollinators of several crops within open field and greenhouse settings. However, the common eastern bumble bee (Bombus impatiens Cresson, 1863) is the only species widely available for purchase in North America. As an eastern species, concerns have been expressed over their transportation outside of their native range. Therefore, there is a need to identify regionally appropriate candidates for commercial crop pollination services, especially in the western U.S.A. In this study, we evaluated the commercialization potential of brown-belted bumble bees (Bombus griseocollis De Geer, 1773), a broadly distributed species throughout the U.S.A., by assessing nest initiation and establishment rates of colonies produced from wild-caught gynes, creating a timeline of colony development, and identifying lab-reared workers’ critical thermal maxima (CTMax) and lethal temperature (ecological death). From 2019 to 2021, 70.6% of the wild-caught B. griseocollis gynes produced brood in a laboratory setting. Of these successfully initiated nests, 74.8% successfully established a nest (produced a worker), providing guidance for future rearing efforts. Additionally, lab-reared workers produced from wild-caught B. griseocollis gynes had an average CTMax of 43.5°C and an average lethal temperature of 46.4°C, suggesting B. griseocollis can withstand temperatures well above those commonly found in open field and greenhouse settings. Overall, B. griseocollis should continue to be evaluated for commercial purposes throughout the U.S.A.

Sáenz-Ceja, J. E., J. T. Sáenz-Reyes, and D. Castillo-Quiroz. 2022. Pollinator Species at Risk from the Expansion of Avocado Monoculture in Central Mexico. Conservation 2: 457–472. https://doi.org/10.3390/conservation2030031

The monoculture of avocado (Persea americana) has triggered the loss of large forested areas in central Mexico, including the habitat of threatened species. This study assessed the potential habitat loss of ten threatened pollinator species due to the expansion of avocado monoculture in Mexico. First, we modeled the distribution of avocado and pollinators. Then, we overlapped their suitable areas at a national level and within the Trans-Mexican Volcanic Belt (TMVB). We also identified the areas with more affected pollinators and coinciding with protected areas. As a result, 78% of the suitable areas for avocado coincided with the distribution of at least one pollinator. Although only two pollinators lost more than one-fifth of their distribution at a national level, the habitat loss increased to 41.6% on average, considering their distribution within the TMVB. The most affected pollinators were Bombus brachycephalus, B diligens, Danaus plexippus, and Tilmatura dupontii, losing more than 48% of their distribution within this ecoregion. The areas with a greater number of affected species pollinators were found in the states of Michoacán, Mexico, and Morelos, where most of the area is currently unprotected. Our results suggest that the expansion of the avocado monoculture will negatively affect the habitat of threatened pollinators in Mexico.

Boyd, R. J., M. A. Aizen, R. M. Barahona‐Segovia, L. Flores‐Prado, F. E. Fontúrbel, T. M. Francoy, M. Lopez‐Aliste, et al. 2022. Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization efforts Y. Fourcade [ed.],. Diversity and Distributions 28: 1404–1415. https://doi.org/10.1111/ddi.13551

Aim Aggregated species occurrence data are increasingly accessible through public databases for the analysis of temporal trends in the geographic distributions of species. However, biases in these data present challenges for statistical inference. We assessed potential biases in data available through GBIF on the occurrences of four flower-visiting taxa: bees (Anthophila), hoverflies (Syrphidae), leaf-nosed bats (Phyllostomidae) and hummingbirds (Trochilidae). We also assessed whether and to what extent data mobilization efforts improved our ability to estimate trends in species' distributions. Location The Neotropics. Methods We used five data-driven heuristics to screen the data for potential geographic, temporal and taxonomic biases. We began with a continental-scale assessment of the data for all four taxa. We then identified two recent data mobilization efforts (2021) that drastically increased the quantity of records of bees collected in Chile available through GBIF. We compared the dataset before and after the addition of these new records in terms of their biases and estimated trends in species' distributions. Results We found evidence of potential sampling biases for all taxa. The addition of newly-mobilized records of bees in Chile decreased some biases but introduced others. Despite increasing the quantity of data for bees in Chile sixfold, estimates of trends in species' distributions derived using the postmobilization dataset were broadly similar to what would have been estimated before their introduction, albeit more precise. Main conclusions Our results highlight the challenges associated with drawing robust inferences about trends in species' distributions using publicly available data. Mobilizing historic records will not always enable trend estimation because more data do not necessarily equal less bias. Analysts should carefully assess their data before conducting analyses: this might enable the estimation of more robust trends and help to identify strategies for effective data mobilization. Our study also reinforces the need for targeted monitoring of pollinators worldwide.