Science Enabled by Specimen Data

Nikkel, E., D. R. Clements, D. Anderson, and J. L. Williams. 2023. Regional habitat suitability for aquatic and terrestrial invasive plant species may expand or contract with climate change. Biological Invasions. https://doi.org/10.1007/s10530-023-03139-8

The threat of invasive species to biodiversity and ecosystem structure is exacerbated by the increasingly concerning outlook of predicted climate change and other human influences. Developing preventative management strategies for invasive plant species before they establish is crucial for effective management. To examine how climate change may impact habitat suitability, we modeled the current and future habitat suitability of two terrestrial species, Geranium lucidum and Pilosella officinarum , and two aquatic species, Butomus umbellatus and Pontederia crassipes , that are relatively new invasive plant species regionally, and are currently spreading in the Pacific Northwest (PNW, North America), an area of unique natural areas, vibrant economic activity, and increasing human population. Using North American presence records, downscaled climate variables, and human influence data, we developed an ensemble model of six algorithms to predict the potential habitat suitability under current conditions and projected climate scenarios RCP 4.5, 7.0, and 8.5 for 2050 and 2080. One terrestrial species ( P. officinarum ) showed declining habitat suitability in future climate scenarios (contracted distribution), while the other terrestrial species ( G. lucidum ) showed increased suitability over much of the region (expanded distribution overall). The two aquatic species were predicted to have only moderately increased suitability, suggesting aquatic plant species may be less impacted by climate change. Our research provides a template for regional-scale modelling of invasive species of concern, thus assisting local land managers and practitioners to inform current and future management strategies and to prioritize limited available resources for species with expanding ranges.

Wilson Brown, M. K., and E. B. Josephs. 2023. Evaluating niche changes during invasion with seasonal models in Capsella bursa‐pastoris. American Journal of Botany. https://doi.org/10.1002/ajb2.16140

Premise Researchers often use ecological niche models to predict where species might establish and persist under future or novel climate conditions. However, these predictive methods assume species have stable niches across time and space. Furthermore, ignoring the time of occurrence data can obscure important information about species reproduction and ultimately fitness. Here, we assess compare ecological niche models generated from full-year averages to seasonal models Methods In this study, we generate full-year and monthly ecological niche models for Capsella bursa-pastoris in Europe and North America to see if we can detect changes in the seasonal niche of the species after long-distance dispersal. Key Results We find full-year ecological niche models have low transferability across continents and there are continental differences in the climate conditions that influence the distribution of C. bursa-pastoris. Monthly models have greater predictive accuracy than full-year models in cooler seasons, but no monthly models are able to predict North American summer occurrences very well. Conclusions The relative predictive ability of European monthly models compared to North American monthly models suggests a change in the seasonal timing between the native range to the non-native range. These results highlight the utility of ecological niche models at finer temporal scales in predicting species distributions and unmasking subtle patterns of evolution.

Marcussen, T., H. E. Ballard, J. Danihelka, A. R. Flores, M. V. Nicola, and J. M. Watson. 2022. A Revised Phylogenetic Classification for Viola (Violaceae). Plants 11: 2224. https://doi.org/10.3390/plants11172224

The genus Viola (Violaceae) is among the 40–50 largest genera among angiosperms, yet its taxonomy has not been revised for nearly a century. In the most recent revision, by Wilhelm Becker in 1925, the then-known 400 species were distributed among 14 sections and numerous unranked groups. Here, we provide an updated, comprehensive classification of the genus, based on data from phylogeny, morphology, chromosome counts, and ploidy, and based on modern principles of monophyly. The revision is presented as an annotated global checklist of accepted species of Viola, an updated multigene phylogenetic network and an ITS phylogeny with denser taxon sampling, a brief summary of the taxonomic changes from Becker’s classification and their justification, a morphological binary key to the accepted subgenera, sections and subsections, and an account of each infrageneric subdivision with justifications for delimitation and rank including a description, a list of apomorphies, molecular phylogenies where possible or relevant, a distribution map, and a list of included species. We distribute the 664 species accepted by us into 2 subgenera, 31 sections, and 20 subsections. We erect one new subgenus of Viola (subg. Neoandinium, a replacement name for the illegitimate subg. Andinium), six new sections (sect. Abyssinium, sect. Himalayum, sect. Melvio, sect. Nematocaulon, sect. Spathulidium, sect. Xanthidium), and seven new subsections (subsect. Australasiaticae, subsect. Bulbosae, subsect. Clausenianae, subsect. Cleistogamae, subsect. Dispares, subsect. Formosanae, subsect. Pseudorupestres). Evolution within the genus is discussed in light of biogeography, the fossil record, morphology, and particular traits. Viola is among very few temperate and widespread genera that originated in South America. The biggest identified knowledge gaps for Viola concern the South American taxa, for which basic knowledge from phylogeny, chromosome counts, and fossil data is virtually absent. Viola has also never been subject to comprehensive anatomical study. Studies into seed anatomy and morphology are required to understand the fossil record of the genus.

Yu, S.-E., S.-L. Dong, Z.-X. Zhang, Y.-Y. Zhang, G. Sarà, J. Wang, and Y.-W. Dong. 2022. Mapping the potential for offshore aquaculture of salmonids in the Yellow Sea. Marine Life Science & Technology 4: 329–342. https://doi.org/10.1007/s42995-022-00141-2

Mariculture has been one of the fastest-growing global food production sectors over the past three decades. With the congestion of space and deterioration of the environment in coastal regions, offshore aquaculture has gained increasing attention. Atlantic salmon ( Salmo salar ) and rainbow trout ( Oncorhynchus mykiss ) are two important aquaculture species and contribute to 6.1% of world aquaculture production of finfish. In the present study, we established species distribution models (SDMs) to identify the potential areas for offshore aquaculture of these two cold-water fish species considering the mesoscale spatio-temporal thermal heterogeneity of the Yellow Sea. The values of the area under the curve (AUC) and the true skill statistic (TSS) showed good model performance. The suitability index (SI), which was used in this study to quantitatively assess potential offshore aquaculture sites, was highly dynamic at the surface water layer. However, high SI values occurred throughout the year at deeper water layers. The potential aquaculture areas for S. salar and O. mykiss in the Yellow Sea were estimated as 52,270 ± 3275 (95% confidence interval, CI) and 146,831 ± 15,023 km 2 , respectively. Our results highlighted the use of SDMs in identifying potential aquaculture areas based on environmental variables. Considering the thermal heterogeneity of the environment, this study suggested that offshore aquaculture for Atlantic salmon and rainbow trout was feasible in the Yellow Sea by adopting new technologies (e.g., sinking cages into deep water) to avoid damage from high temperatures in summer.

Hirabayashi, K., S. J. Murch, and L. A. E. Erland. 2022. Predicted impacts of climate change on wild and commercial berry habitats will have food security, conservation and agricultural implications. Science of The Total Environment 845: 157341. https://doi.org/10.1016/j.scitotenv.2022.157341

Climate change is now a reality and is altering ecosystems, with Canada experiencing 2–4 times the global average rate of warming. This will have a critical impact on berry cultivation and horticulture. Enhancing our understanding of how wild and cultivated berries will perform under changing climates will be essential to mitigating impacts on ecosystems, culture and food security. Our objective was to predict the impact of climate change on habitat suitability of four berry producing Vaccinium species: two species with primarily northern distributions (V. uliginosum, V. vitis-idaea), one species with a primarily southern distribution (V. oxycoccos), and the commercially cultivated V. macrocarpon. We used the maximum entropy (Maxent) model and the CMIP6 shared socioeconomic pathways (SSPs) 126 and 585 projected to 2041–2060 and 2061–2080. Wild species showed a uniform northward progression and expansion of suitable habitat. Our modeling predicts that suitable growing regions for commercial cranberries are also likely to shift with some farms becoming unsuitable for the current varieties and other regions becoming more suitable for cranberry farms. Both V. macrocarpon and V. oxycoccos showed a high dependence on precipitation-associated variables. Vaccinium vitis-idaea and V. uliginosum had a greater number of variables with smaller contributions which may improve their resilience to individual climactic events. Future competition between commercial cranberry farms and wild berries in protected areas could lead to conflicts between agriculture and conservation priorities. New varieties of commercial berries are required to maintain current commercial berry farms.

Prasetyo, E., S. Utomo, A. F. Maulana, R. Arifriana, and P. Lestari. 2022. Current Distribution of a Luxurious Wood Species, Diospyros spp. with Its Climatic Information, based on Global Biodiversity Website. Jurnal Sylva Lestari 10: 267–277. https://doi.org/10.23960/jsl.v10i2.576

Ebony (Diospyros spp.) is a fancy wood distributed in eastern Indonesia. D. celebica Bakh, D. lolin Bakh, D. pilosanthera Blanco, D. ebenum Koenig, D. ferrea (Wild.) Bakh and D. rumphii Bakh are categorized as “Fancy Wood Class I” in the Indonesian market. These woods are an important product with the highest tax compared to other grades. This study aimed to identify the distribution of six ebonies based on data global biodiversity web service (Global Biodiversity Information Facility) and their climatic condition based on global climate data (WorldClim). Data from the web service, species occurrence, and climatic conditions were processed using QGIS. Species occurrence data was then extracted using GBIF occurrence. Furthermore, species occurrence data was then overlaid with climate data using point sampling tools. The results found that three ebonies scattered in the tropics and three others (D. celebica Bakh, D. rumphii Bakh, D. lolin Bakh) mostly occurred in Indonesia. Annual rainfall and temperature conditions ranged from 1,722 – 4,013 mm and 23.4 – 27.2°C for the three species of ebony in Indonesia. The distribution and climatic conditions of ebony are the initial information for further research, such as the species distribution model related to climate change and the genetic conservation agenda.

KHRAPOV, D., N. KOVAL, and N. YUNAKOV. 2022. Prediction of the distribution limits of Rhinomias forticornis (Boheman, 1842) (Coleoptera: Curculionidae: Entiminae) based on Remote Sensing. Journal of Insect Biodiversity 31. https://doi.org/10.12976/jib/2022.31.1.3

Morphometry and diagnosis of Rhinomias forticornis (Boheman, 1842) are given. Distribution of Rhinomias forticornis is analyzed using known occurrences, original ecological data, correlative species distribution modeling with aspect on Last Glacial Maximum environment are given. To achieve a more re…

Ramírez, F., V. Sbragaglia, K. Soacha, M. Coll, and J. Piera. 2022. Challenges for Marine Ecological Assessments: Completeness of Findable, Accessible, Interoperable, and Reusable Biodiversity Data in European Seas. Frontiers in Marine Science 8. https://doi.org/10.3389/fmars.2021.802235

The ongoing contemporary biodiversity crisis may result in much of ocean’s biodiversity to be lost or deeply modified without even being known. As the climate and anthropogenic-related impacts on marine systems accelerate, biodiversity knowledge integration is urgently required to evaluate and monit…

Filartiga, A. L., A. Klimeš, J. Altman, M. P. Nobis, A. Crivellaro, F. Schweingruber, and J. Doležal. 2022. Comparative anatomy of leaf petioles in temperate trees and shrubs: the role of plant size, environment and phylogeny. Annals of Botany 129: 567–582. https://doi.org/10.1093/aob/mcac014

Background and Aims Petioles are important plant organs connecting stems with leaf blades and affecting light-harvesting ability of the leaf as well as transport of water, nutrients and biochemical signals. Despite the high diversity in petiole size, shape and anatomy, little information is availabl…

Vasconcelos, T., J. D. Boyko, and J. M. Beaulieu. 2021. Linking mode of seed dispersal and climatic niche evolution in flowering plants. Journal of Biogeography. https://doi.org/10.1111/jbi.14292

Aim: Due to the sessile nature of flowering plants, movements to new geographical areas occur mainly during seed dispersal. Frugivores tend to be efficient dispersers because animals move within the boundaries of their preferable niches, so seeds are more likely to be transported to environments tha…