Science Enabled by Specimen Data

Orr, M. C., Hughes, A. C., Chesters, D., Pickering, J., Zhu, C.-D., & Ascher, J. S. (2020). Global Patterns and Drivers of Bee Distribution. Current Biology. doi:10.1016/j.cub.2020.10.053 https://doi.org/10.1016/j.cub.2020.10.053

Insects are the focus of many recent studies suggesting population declines, but even invaluable pollination service providers such as bees lack a modern distributional synthesis. Here, we combine a uniquely comprehensive checklist of bee species distributions and >5,800,000 public bee occurrence re…

Li, X., Li, B., Wang, G., Zhan, X., & Holyoak, M. (2020). Deeply digging the interaction effect in multiple linear regressions using a fractional-power interaction term. MethodsX, 7, 101067. doi:10.1016/j.mex.2020.101067 https://doi.org/10.1016/j.mex.2020.101067

In multiple regression Y ~ β0 + β1X1 + β2X2 + β3X1 X2 + ɛ., the interaction term is quantified as the product of X1 and X2. We developed fractional-power interaction regression (FPIR), using βX1M X2N as the interaction term. The rationale of FPIR is that the slopes of Y-X1 regression along the X2 gr…

Medina, A. M., & Almeida-Neto, M. (2020). Grinnelian and Eltonian niche conservatism of the European honeybee (Apis mellifera) in its exotic distribution. Sociobiology, 67(2), 239. doi:10.13102/sociobiology.v67i2.4901 https://doi.org/10.13102/sociobiology.v67i2.4901

The understanding of how niche-related traits change during species invasion have prompted what is now known as the niche conservatism principle. Most studies that have tested the niche conservatism principle have focused on the extent to which the species’ climatic niches remain stable in their exo…

Liu, X., Blackburn, T. M., Song, T., Wang, X., Huang, C., & Li, Y. (2020). Animal invaders threaten protected areas worldwide. Nature Communications, 11(1). doi:10.1038/s41467-020-16719-2 https://doi.org/10.1038/s41467-020-16719-2

Protected areas are the cornerstone of biodiversity conservation. However, alien species invasion is an increasing threat to biodiversity, and the extent to which protected areas worldwide are resistant to incursions of alien species remains poorly understood. Here, we investigate establishment by 8…

Piel, W. H. (2018). The global latitudinal diversity gradient pattern in spiders. Journal of Biogeography, 45(8), 1896–1904. doi:10.1111/jbi.13387 https://doi.org/10.1111/jbi.13387

Aim: The aim of this study was to test the hypothesis that the global latitudinal diversity gradient pattern in spiders is pear‐shaped, with maximum species diversity shifted south of the Equator, rather than egg‐shaped, centred on the equator, this study infers the gradient using two large datasets…